The mathastext package
 Jean-François Burnol
 jfbu (at) free (dot) fr
 Package version: 1.4b (2024/07/27)

The mathastext package changes the fonts which are used in math mode for letters, digits and a few other punctuation and symbol signs to replace them with the font as used for the document text. Thus, the package makes it possible to use a quite arbitrary font without worrying too much that it does not have specially designed accompanying math fonts. Also, mathastext provides a simple mechanism in order to use more than one math-as-text font in the same document.

```
`mathastext' is a LaTeX package
    \usepackage{mathastext}
The document will use in math mode the text font
as configured at package loading time, for these
characters:
    abcdefghijklmnopqrstuvwxyz
    ABCDEFGHIJKLMNNOPQRSTUVWXYZ
    0123456789
    !?,.:;+-=()[]/#$%&<>>|{}\
The command \MTsetmathskips allows to set up extra
spacings around each given letter.
Use multiple \Mathastext[name]'s to define in the
preamble various math versions using each a given
text font, to be later activated in the document
body via the command \MTversion{name}.
With the subdued option, mathastext will be active
only inside such math versions distinct from the
normal and bold.
Main options: italic, frenchmath, defaultmathsizes,
    subdued, asterisk, LGRgreek.
```

[^0]
Contents

What mathastext does . . 1, p. 2 Aim of this package and basic usage 1.1, p. 2 Examples 1.2, p. 3
Main options 1.3, p. 8 The italic option-The frenchmath option - The defaultmathsizes option - The subdued op-tion-The LGRgreek option.
Miscellanea
1.4, p. 10

Load mathastext always last-Avoid OT1 en-coding-Derivative, minus, asterisk-Large symbols and delimiters-amsmath-hbar-Dotless i and j -fontspec-vec accent-math accentsSans serif in math-mathastext with beamer -mathastext with frenchmath-Intervals and separators-Unicode engines-The unicodeminus option - Two examples with OpenType fonts -Compatibility with other packages.
Math alphabets 1.5, p. 20
Math versions 1.6, p. 23
Greek letters 1.7, p. 25
The Greek-related options-Shape of Greek letters - Control sequences to access directly upright or italic shape for Greek under LGRgreek option - \mathgreekupbold and \mathgreekitboldSpecial behavior of \mathrm, \mathbf, \mathit
with Greek letters via the LGRgreek+ option.
Advanced capacities 1.8, p. 33
Extra spaces around letters-Background on italic corrections in math mode-Extra glue after \exists, \forall, and before the prime glyph-Extended scope of the math alphabets commands-Hacking letters (and even digits) for special tasks.

Package commands
 2, p. 43

Commands for regular usage 2.1, p. 43 Preamble-only commands-Commands for body or math.
Commands for expert usage 2.2, p. 48 Expert commands which are preamble-onlyExpert commands usable everywhere-Expert commands usable only outside of math mode -Expert commands usable only in math mode.

Package options

3, p. 57
Summary of main options . 3.1, p. 57
Complete list of options . . 3.2, p. 57
Change log 4, p. 65
Implementation
5, p. 73

1 What mathastext does

If you have used the package before please make sure to check first section 4 where all changes across releases are recorded.

All blue colored words, such as \Mathastext or italic, are hyperlinked to their offical descriptions located either in the section 2 (Package commands) or subsection 3.2 (Complete list of options).

1.1 Aim of this package and basic usage

The initial ideology of mathastext was to produce mathematical texts with a very uniform look, not separating math from text as strongly as is usually done.
mathastext's basic aim is thus to have the same font for text and mathematics. With hundreds of free text fonts packaged for $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ and only a handful of math ones, chances are your favorite text font does not mix so well with the available math ones; mathastext may then help. Note that mathastext was initially developed for the traditional $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts and engines, and that compatibility with Unicode engines and OpenType fonts is partial.

Here is a minimal example of what may go into the preamble:

```
\usepackage[T1]{fontenc}
\usepackage{times}
\usepackage[italic]{mathastext}
```

The package records which font is set up for text, at the time it is loaded, and then arranges things in order for this text font to be used in math mode as well. So, with the preamble as above all letters, digits, and punctuation signs inside math mode will then be typeset in Times. ${ }^{1}$ The exact list of characters concerned by mathastext is a subset of the basic ASCII set:

```
    abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
        0123456789
!?*,.:;+-=()[]/#$%&<>|{} and\
```

As one can see, this is a very limited list! Some possibilities exist regarding Greek letters and will be described later.

1.2 Examples

Here is another simple example:
ackage\{libertinus-type1\}\usepackage[italic,LGRgreek,defaultmathsizes]\{mathastext\}TheLGRgreekoptionistheretotakeadvantagethatthelibertinus-type1package2alsoprovidesGreeklettersinLGRencoding,whichcanthusbeusedbymathastextinmathmode.Andwedohereasifwedidnotknowabouttheexistenceofthelibertinust1mathpackage!3Thiswouldhavebeentheobviouschoice,butthenonewouldn'tneedmathastextandIcouldn'tevenstartthisdocumentation.undefined

More sophisticated preambles will use multiple times the \Mathastext command in the preamble with its optional argument [\langle math_version \rangle] in order to define math versions corresponding to a given font configuration. These mathastextenriched math versions are then activated in the document body via the \backslash MTversion $\{\langle$ math_version $\rangle\}$ command, which modifies both the text font and the math font.

[^1]We now give some examples with a verbatim copy of the preamble code corresponding to them, as can be found in the source of this documentation. The detailed option and command descriptions will be given later.

First of all, the package was loaded using this:

```
\usepackage[subdued,%
    asterisk,%
    defaultmathsizes,%
    symbolmisc,symbolre,%
    LGRgreek] {mathastext}
```

In the definitions of the mathastext-enriched math versions we keep commands which may have been redundant in the original preamble, because they were issued earlier for a previous math version definition.

Let's start with Latin Modern typewriter proportional. Its usage was configured in the preamble using this:

```
\MTlettershape{n}
\MTupgreek
\MTgreekfont{cmtt}
\MTfamily{lmvtt}
\Mathastext[lmvtt]
```

Its usage is triggered using

\MTversion\{lmvtt\}

in the document. Here is an example:
Let (X, Y) be two functions of a variable a. If they obey the differential system $\left(\mathrm{VI}_{\nu, \mathrm{n}}\right)$:

$$
\begin{aligned}
& a \frac{d}{d a} X=\nu X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(\nu+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{\text {VI }}$ differential equation:

$$
\begin{aligned}
& \quad \frac{d^{2} q}{d b^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
& \quad+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{\alpha+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\} \\
& \text { with parameters }(\alpha, \beta, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(\nu+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right) . \\
& \text { Test of uppercase Greek in math: АВГ } \Xi \Omega .
\end{aligned}
$$

Both the Latin and Greek letters are upright, in conformity to the way the lmvtt version was defined.

Now with the fonts from the libertinus-type1 distribution ${ }^{4}$. The preamble code is:

```
\MTfamily{LibertinusSerif-TLF}
\MTlettershape{n}
\MTseries{m}
\MTgreekfont{LibertinusSerif-TLF}
\MTupgreek
\Mathastext[libertinus]
\MTseries{sb}
\Mathastext[libertinussemibold]
```

Its usage in the document body for the example below is triggered via \MTversion[libertinus] \{libertinussemibold\}
This syntax modifies the text fonts to be those which were defined to hold for the mathastext-math version passed as optional argument, and sets the math fonts according to the mandatory argument. Hence the math mode uses semibold font but the text font uses the normal weight.

Let (X,Y) be two functions of a variable a. If they obey the differential system ($\mathrm{VI}_{v, \mathrm{n}}$):

$$
\begin{aligned}
& a \frac{d}{d a} X=v X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(v+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{V I}$ differential equation:

$$
\begin{array}{r}
\frac{d^{2} q}{d^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{\alpha+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\}
\end{array}
$$

with parameters $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta})=\left(\frac{(v+\mathrm{n})^{2}}{2}, \frac{-(v+\mathrm{n}+1)^{2}}{2}, \frac{\mathrm{n}^{2}}{2}, \frac{1-\mathrm{n}^{2}}{2}\right)$.
Test of uppercase Greek in math: АВГ $\triangle \Xi \Omega$.
Now with a Times clone. We will configure Latin letters to be in italic shape, and Greek letters to be italic for lowercase and upright for uppercase:

```
\usepackage{times}% it modifies the \{rm,sf,tt}default's
\MTfamily{\rmdefault}
\MTlettershape{it}
\MTseries{m}
\MTgreekfont{txr}
```

[^2]\MTitgreek \backslash MTupGreek
\backslash Mathastext [times]
\% \MTversion\{times\} will change not only math but also text, so it
\% will re-enact the \rmdefault, \sfdefault, \ttdefault from loading times.sty
We now use this in the document body via
\MTversion\{times\}
Let (X, Y) be two functions of a variable a. If they obey the differential system $\left(V I_{v, n}\right)$:
\[

$$
\begin{aligned}
a \frac{d}{d a} X & =v X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
a \frac{d}{d a} Y & =-(v+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$
\]

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{V I}$ differential equation:

$$
\begin{array}{r}
\frac{d^{2} q}{d b^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{\alpha+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\}
\end{array}
$$

with parameters $(\alpha, \beta, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(v+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right)$.
Test of uppercase Greek in math: АВГ $\triangle \Xi \Omega$.
Let us be a bit more original and have our mathematics with italic letters from the sans serif font Helvetica, while the letters in text use New Century Schoolbook. Also we want Greek letters (both lowercase and uppercase) to be in italic shape. The preamble code was:

```
\usepackage{newcent}% attention that it modifies all three of \rmdefault,
    % \sfdefault and \ttdefault
\MTfamily{\rmdefault}
\MTlettershape{it}
% \MTitgreek\MTupGreek % our demo does not use newcent for math anyway
\Mathastext [newcent]
\usepackage[scaled]{helvet}
\MTfamily{\sfdefault}
\MTlettershape{it} % redundant here
\MTseries{m}
\MTitgreek % make both lowercase and uppercase Greek italic
\MTgreekfont{cmss}
\Mathastext [helvet]
```

And the next demo is configured in the document body via
\MTversion [newcent] \{helvet\}

Let (X, Y) be two functions of a variable a. If they obey the differential system $\left(V I_{\nu, n}\right)$:

$$
\begin{aligned}
& a \frac{d}{d a} X=v X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(v+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=a^{2}$ the $P_{V I}$ differential equation:

$$
\begin{array}{r}
\frac{d^{2} q}{d b^{2}}=\frac{1}{2}\left\{\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-b}\right\}\left(\frac{d q}{d b}\right)^{2}-\left\{\frac{1}{b}+\frac{1}{b-1}+\frac{1}{q-b}\right\} \frac{d q}{d b} \\
+\frac{q(q-1)(q-b)}{b^{2}(b-1)^{2}}\left\{a+\frac{\beta b}{q^{2}}+\frac{\gamma(b-1)}{(q-1)^{2}}+\frac{\delta b(b-1)}{(q-b)^{2}}\right\}
\end{array}
$$

with parameters $(a, \beta, \gamma, \delta)=\left(\frac{(v+n)^{2}}{2}, \frac{-(v+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right)$.
Test of uppercase Greek in math: $A B\ulcorner\triangle \equiv \Omega$.
And after all that, we may wish to return to the default math typesetting (let's shorten the extract here in case the reader makes an indigestion ...). This is easy because all previous usages were enclosed in braces $\{\ldots\}$ so as to limit the scope. As mathastext was loaded with option subdued the default rendering (i.e. in the normal and bold math versions) is (almost) as if the package was not loaded at all, and it simply matches the document font configuration. Here it thus matches the

\usepackage\{mlmodern\}

which was included in the document preamble prior to loading mathastext.
Let (X, Y) be two functions of a variable a. If they obey the differential system ($V I_{\nu, n}$):

$$
\begin{aligned}
& a \frac{d}{d a} X=\nu X-\left(1-X^{2}\right) \frac{2 n a}{1-a^{2}} \frac{a X+Y}{1+a X Y} \\
& a \frac{d}{d a} Y=-(\nu+1) Y+\left(1-Y^{2}\right) \frac{2 n a}{1-a^{2}} \frac{X+a Y}{1+a X Y}
\end{aligned}
$$

then the quantity $q=a \frac{a X+Y}{X+a Y}$ satisfies as function of $b=$ a^{2} the $P_{V I}$ differential equation with parameters $(\alpha, \beta, \gamma, \delta)=$ $\left(\frac{(\nu+n)^{2}}{2}, \frac{-(\nu+n+1)^{2}}{2}, \frac{n^{2}}{2}, \frac{1-n^{2}}{2}\right)$.
Test of uppercase Greek in math: $\Gamma \Delta \Xi \Omega$ (no \backslash Alpha, no \backslash Beta).
If the scope of our earlier examples using mathastext-enriched math versions had not been limited we would have issued

\MTversion\{normal\}

to return to the normal (almost not influenced by mathastext) math version.

The Greek letters varied across our examples thanks to the LGRgreek option which made the $\backslash M T g r e e k f o n t ~ c o m m a n d ~ a c t i v e ~ f o r ~ c o n f i g u r a t i o n ~ o f ~ t h e ~ m a t h ~ v e r-~$ sions. ${ }^{5}$

Since $1.3 y$ this documentation uses globally the mlmodern ${ }^{6}$ font package and has added an example using the Libertinus font in type-1 format ${ }^{7}$ although there is an existing accompanying math font ${ }^{8}$.

1.3 Main options

1.3.1 The italic option

In the initial version 1.0, the Latin letters in mathematical mode assumed the exact same shape as in text mode, and this meant, generally speaking, that they would turn up upright. Doing this gives a very uniform look to the document, so that one has to make an effort and read it with attention, and this was one of the design goals of mathastext.

Nevertheless, soon after I posted the initial version of the package to CTAN, I was overwhelmed by numerous ${ }^{9}$ questions ${ }^{10}$ on how to have the letters be in italic shape.

The default is still, as in version 1.0, for everything to be in upright shape, but it suffices to pass to the package the option italic to let the Latin letters in math mode be in italic shape. ${ }^{11}$

1.3.2 The frenchmath option

It is a variant of the italic option which keeps the uppercase Latin letters in upright shape ${ }^{12}$. Also lets the Greek letters, if the latter are under mathastext influence, be all upright, lowercase as uppercase.

[^3]
1.3.3 The defaultmathsizes option

The default sizes give for subscripts of subscripts barely legible glyphs (author's opinion!). So mathastext makes more reasonable choices. It also redefines \Huge and defines a \backslash HUGE size, copied from the moresize package. To cancel all of this use option defaultmathsizes.

1.3.4 The subdued option

This option was introduced in v1.15. It provides a manner to switch on the mathastext-ification only for limited portions of the document, with the help of the mechanism of math versions. Without the subdued option, the mathastextification applies by default to the whole of the document (and one may also define additional math versions in the preamble); with the subdued option the mathastextification is done only in math versions distinct from the standard and bold ones.

Despite some limitations I will now partially describe, the subdued option has its utility, as I think is illustrated enough by the examples given at the start of this document and it works reasonably well.
mathastext was not written initially in order to allow its action to be completely canceled. It does not store (all) mathcodes nor does it set them (all) when changing math versions; only that would allow a perfect subdued mode (and $\mathrm{I}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}}$ is rather obstinate in making that tricky or at least uneasy if sticking to its official interface to math mode, as it is almost entirely preamble only).

Releases 1.3 t and 1.3 u do this kind of things to maintain usability across multiple mathastext-ified math versions of characters which are obviously font encoding dependent such as the minus sign as en-dash (or unicode minus), the dotless i, the \hbar, the text accents.

But this should be extended to all mathastext-ified characters which basically would amount to an extensive rewrite of large legacy portions of the code. Currently the support for the subdued mode and to multiple math versions amounts to some kind of a kludge, added to an initial design which handled a single unique text font.

To get the displayed math (almost) as if mathastext had not been loaded, one must also use the option defaultmathsizes. But this does not quite suffice, as, for example, the colon, the dot, and the minus sign belong in the default $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ math mode set-up to three distinct fonts whereas mathastext will pick (even subdued) the three of them in the same font, ${ }^{13}$ and although it will make a reasonable choice of this font, this is not an exact re-installement of the previously prevailing situation.

[^4]And then other packages could have done arbitrary things regarding character mathcodes, so to be on the safe side one needs the basic option which limits the mathastextification to letters and digits. ${ }^{14}{ }^{15} 16$ Even then, in some circumstances, this may not suffice: for example the euler package declares the digits to be picked from the same font as the Latin letters, but the subdued mathastext "normal" math version will pick them from the same font as used for operator names, which here with the euler package is the document body default text font.

The frenchmath option effect applies also to the subdued "normal" and "bold" math versions.

1.3.5 The LGRgreek option

There is the issue of Greek letters. Sometimes the text font has Greek glyphs, in LGR encoding ${ }^{17}$ (this should be mentioned in the documentation of the font package). Then option LGRgreek tells mathastext to pick up these Greek letters.

It is naturally possible to leave the responsability to set up Greek letters to some other packages loaded previously to mathastext. And even if mathastext has been loaded with one of its Greek related options the command \MTstandardgreek will locally cancel its customization of Greek letters. The command \MTcustomgreek reenables the customization done by mathastext, if it was loaded with the LGRgreek or one of the other Greek related options.

Release 1.3 y has added important new aspects to the handling of Greek letters via the LGRgreek option. Make sure to read the subsubsection 1.7.3.

1.4 Miscellanea

Please note that most material to be found in this section was written many years ago (except the two subsections on frenchmath on one hand and intervals on the other hand). But it should still be valid!

Ultimately most information here should be moved into the reference sections section 2 and subsection 3.2, and only some generalities should be kept here.

[^5]
1.4.1 Load mathastext always last

The "large" math symbols are not modified in any way by mathastext. Only loading some math font packages such as fourier, kpfonts, mathabx, mathdesign, txfonts, newtxmath, libertinust1math, others... will change them. Think of loading these packages before mathastext, else they might undo what mathastext did.

More generally any package (such as amsmath) dealing with math mode should be loaded before mathastext.

1.4.2 Avoid OT1 encoding

The default OT1 does not have the $<>\mid\{ \}$ and \backslash glyphs. If mathastext detects OT1 as the default encoding it will leave these characters to their defaults from the math fonts. ${ }^{18}$

If mathastext detects the obsolete OT1 encoding it does not do anything with $<,>, \mid,\{$, and $\}$ which (except for monospace fonts) are not available in that encoding. To fully benefit from mathastext it is recommended to use some other encoding having these glyphs such as T1 or LY1.

1.4.3 Derivative, minus, asterisk

The text characters ' and - are not used, and the asterisk is done only optionally:

- the derivative sign ' is left to its default as the text font glyph ' is not, as a rule, a satisfying alternative. ${ }^{19}$
- for the minus sign mathastext uses the endash character -, if available, and not the hyphen character -. With an OpenType font, mathastext uses per default the EN DASH U+2013 (see unicodeminus).
- the asterisk option is required for mathastext to use the text font for the binary infix math operator $*$ and the control sequence \ast. They will use then the text asterisk * suitably lowered, and with the correct spaces around it as binary operator.

Attention that with this option, inputs such as $\$ \mathrm{R}^{\wedge} * \$$ or $\$ \mathrm{R}^{\wedge} \backslash$ ast $\$$ raise errors and must be replaced by $\$ R^{\wedge}\{*\} \$$, respectively $\$ R^{\wedge}\{\backslash$ ast $\} \$$.

[^6]
1.4.4 Large symbols and delimiters

Nothing is changed to the "large" math symbols, except for Π and \sum in inline math which, like here: $\Pi \Sigma$, will be taken from the Symbol Font if option symbolmisc was used.

The left and right delimiters are taken from the text font only for the base size: any one of \big, \bigl, \bigr, etc....will trigger the use of the original math symbols.

1.4.5 amsmath

The behavior of the \DeclareMathOperator command of amsmath is modified by mathastext for it to use the correct font. Additionally, release 1.3n of mathastext at long last also handles an extra operation done by amsmath for '.:/-* to be used in operator names without the extra math spacing. ${ }^{20}$ This customization is suppressed in subdued mode for the normal and bold math versions.

1.4.6 hbar

The default $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ definition of $\backslash h b a r$ would in our context make use of the h of the current math font (so for us, it is also the text font, perhaps in italic shape), but with a bar accross the h from the original default math font for letters (usually $\mathrm{cmmi})$. We redefine \backslash hbar to use the text font macron accent $(\backslash=)$ as a mock math accent (this takes into account the italic option and is compatible with subscripts and superscripts).

Since 1.12 mathastext when dealing with a Unicode font sets the \hbar to be the character from the font having hexadecimal codepoint U+0127.

Since 1.3 u the general 8bits font encoding is supported (see discussion of the mathaccents option at end of this list for the shared limitations). Brief testing with various usual $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts shows that the vertical positioning of the bar isn't satisfying. It is planned to either add a parameter to adjust it or to modify altogether the mode of construction of the \hbar.

Use nohbar to tell mathastext not do provide its own \hbar.

1.4.7 Dotless \mathbf{i} and \mathbf{j}

By default the package redefines \imath and $\backslash j$ math to give (in math mode) the dotless i and j (if it exists at all) from the text font.

[^7]
1.4.8 fontspec

fontspec has to be loaded with the option no-math, and before mathastext.

1.4.9 vec accent

The default \vec accent is not appropriate for upright letters, so mathastext provides under option fouriervec a math accent control sequence \fouriervec which takes its glyph in a Fourier font. A poorman Ersatz \pmvec is always available ; it is reasonably good looking on upright letters and works with the \rightarrow glyph.

1.4.10 math accents

If option mathaccents is used then mathastext attempts to let the math accents \acute, \grave, etc... use the suitable glyphs from the text font.

The \vec math accent is not handled here, as it is not available in the usual 8bits font encodings. See the fouriervec option or the \pmvec command.

The math accents obey the subdued option and will change in sync with the mathastext-ified text font used in each non subdued math version.
(Very) brief testing during $1.3 u$ development with $\mathrm{X}_{-1} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{Luar}_{\mathrm{E}} \mathrm{X}$ let the author conclude that usage with the \Umathaccent primitive of an OpenType accent glyph slot (which in the text font is for usage as a postpended combining character) gives definitely bad horizontal placements for both engines (each in its own way). Thus, the redefinitions of accents for a mathastext declared math version with an OpenType font is by default canceled. ${ }^{21}$ Use unimathaccents to force usage of the OpenType font text accents glyph slots with the \Umathaccent primitive. Expert users are invited to check out the code and to contribute suggestions if some extras can improve it.

1.4.11 Sans serif in math

The following set-up often gives esthetically pleasing results: it is to use the sansserif member of the font family for math, and the serif for text.
}
}

1.4.12 mathastext with beamer

Starting with release 3.34 of beamer ${ }^{22}$, mathastext is recognized as a "math font package".

[^8]${ }^{22}$ Till Tantau, Joseph Wright, Vedran Miletić, A ATEX class for producing presentations and slides, https://ctan.org/pkg/beamer.
}

Only with earlier beamer versions is it necessary to issue \usefonttheme\{professionalfonts\}
in the preamble. Example:

```
\documentclass{beamer}
%\usefonttheme{professionalfonts}% obsolete for mathastext since beamer 3.34
\usepackage{newcent}
\usepackage[scaled=.9] {helvet}
\renewcommand{\familydefault}{\rmdefault}
\usepackage[defaultmathsizes,symbolgreek]{mathastext}
\renewcommand{\familydefault}{\sfdefault}
\begin{document}
\begin{frame}
    This is some text and next comes some math: $E=mc^2$
    \[
    E=mc^2=a^n+b^n-c^n=\alpha\beta\gamma
    \]
    \begin{align}
        E&=mc^2\\
        E&=h\nu
    \end{align}
    And again some text.
\end{frame}
\end{document}
```


1.4.13 mathastext with frenchmath

To use mathastext concurrently with the frenchmath package ${ }^{23}{ }^{24}$ of Antoine Missier:

- load frenchmath with its option capsit,
- and load mathastext afterwards (with possibly some font packages loaded in-between), passing it the option frenchmath*.

Limited testing indicated that the combination of the two packages (using the options as indicated above) works satisfactorily. There may be some minor adjustments to do, as the mathastext-ified math font may cause issues to some of the frenchmath macros: for exemple \backslash Oijk may not work well simply due to the font lacking a dotless \mathbf{j}, but use then defaultimath.

You can either use the Greek related options of frenchmath or those of mathastext. Quite certainly better not to use both at same time, anyhow this has not been tested and is not supported.

[^9]
1.4.14 Intervals and separators

For appropriate mark-up and typesetting of intervals with conventions about opening and closing delimiters which are not the default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ ones, one may use the mathtools ${ }^{25}$ provided \DeclarePairedDelimiterX. For example, here is how one can define an \Ioo macro (the letter "o" standing for "open") for typesetting an open (in the mathematical meaning of the word) interval using square brackets:

$$
\text { \DeclarePairedDelimiterX\Ioo [2]\{]\}\{[\}\{\#1;\#2\} }
$$

Use then $\$ \mathrm{I}=\backslash \mathrm{Ioo}\{\mathrm{A}\}\{\mathrm{B}\} \$$ type mark-up in your source, and the derived variants \Ioo* or \Ioo[\Big] for example will also work.

Note for very advanced users: if employing \MTnonlettersobeymathxx, our \Ioo must be used as \Ioo* or \Ioo[\Big] (for example) else it raises an error. Alternatively, replace in the above] by \{]\} and [by \{[\} and then \Ioo works (and also \Ioo[\Big]). But \Ioo* is broken. This is a known limitation of the \MTnonlettersobeymathxx functionality, and is one reason why mathastext does not make it the default behavior.

We used in this example the semi-colon as separator. This is seen sometimes in contexts where the interval extremities are decimal numbers, and the language convention is to use the comma as decimal point. The binarysemicolon option tells mathastext to configure the ; character to use in math mode "binary infix operator" type spacing, matching observed practice in some mathematical contexts. The binarysemicolon option is executed automatically by mathastext on receiving either the frenchmath* or the frenchmath+ options.

On the topic of the decimal point, it is recommended to use the \np macro from the numprint ${ }^{26}$ package with its autolanguage and np options. This is the best choice if one may have to also use the same mathematical expression with numerical quantities in another language having different conventions.

For those languages such as French where the convention is to use as decimal separator a colon, you may alternatively pass to mathastext either the decimalcomma or the ncccomma options, to tell it to load the eponymous packages decimalcomma ${ }^{27}$ or ncccomma ${ }^{28}$ respectively, which make the comma (to some extent) 'intelligent', i.e. decide on the spacing type (ordinary or punctuation) depending on next token. Do not load directly the packages but simply use the corresponding option and mathastext will do the loading and take appropriate needed measures for compatibility. The decimalcomma option is included in the frenchmath* option, and the ncccomma option is included in the frenchmath+ option.

Let's give another example of usage of mathtools here to define a macro for integer ranges:
\DeclarePairedDelimiterX\Iffint[2]\{\llbracket\}\{\rrbracket\}\{\#1,\#2\}

[^10] (and possibly others). A poorman definition might be:
\ifdefined $\backslash 1 l$ bracket $\backslash e l$ se $\backslash \operatorname{def} \backslash l l b r a c k e t\{\{[\backslash![\}\} \backslash f i$
\ifdefined \backslash rrbracket $\backslash e l$ se \backslash def \backslash rrbracket $\{] \backslash!]\}\} \backslash f i$
Regarding open intervals in the French notation such as]a,b[, an alternative avoiding usage of specific mark-up is provided by the ibrackets ${ }^{29}$ package which makes the square brackets mathematically active, in the same spirit as for the (semi) 'intelligent' comma mentioned above. Brief testing indicates this package is compatible with mathastext, even when using multiple math versions. Read the fine print below for some limitations though.

Note for very advanced users: compatibility is only partial as the effect of ibrackets is canceled after \MTnonlettersobeymathxx. This is expected and a special compatibility layer would be needed, of the same type as has been done to support fully the decimalcomma and ncccomma packages via eponymous mathastext options. There is no plan at this time to add such a patch making the compatibility exhaustive.

It is possible to use the noparenthesis option to turn off completely the mathastext actions on square brackets (and parentheses).

1.4.15 Unicode engines

mathastext is minimally Unicode aware since 1.12 and can be used with $\mathrm{X}_{\mathrm{G}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ or LuaTEX. Starting with release 1.3, it needs luatex to be at least as recent as the one which was provided with the TL2013 distribution.

However mathastext applies only to (a subset of) the 32-127 ascii range, and optionally to Greek letters, but for the latter only if provided via " $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts" such as Euler, Symbol or LGR-encoded fonts. It does not know how to use a given Unicode font simultaneously for Latin and Greek letters.

Thus, first consider much better alternatives:

- Since 2018, the package mathfont ${ }^{30}$ adapts Unicode text fonts to usage in math mode. It works with both $\mathrm{X}_{\mathrm{H}} \mathrm{I}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{LuaT}_{\mathrm{E}} \mathrm{X}$.
- For $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ only, mathspec ${ }^{31}$ also allows usage of arbitrary text fonts in mathematics.
- and of course unicode-math ${ }^{32}$ is the standard package for using OpenType fonts which are equipped with the needed extra support being used in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ math mode.

If using any one of the above you probably don't need, don't want, and should not use mathastext.

[^11]Let me insist that mathastext has not been tested in any systematic manner under the Unicode engines; and that it is expected to be most definitely incompatible with unicode-math, although your mileage may vary and some features may appear to work.

When using mathastext with either $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathrm{Lua}_{\mathrm{E}} \mathrm{X}$ it is recommended to use the fontspec package (see remark below on \encodingdefault). Furthermore, if using fontspec it is necessary to load it with its no-math option, and this must happen before loading mathastext.

- Use fontspec with its no-math option, and load it prior to mathastext. As some packages load fontspec themselves (for example polyglossia), a
\PassOptionsToPackage\{no-math\}\{fontspec\}
early in the preamble might be needed.
- The amsmath package, if used, must be loaded prior to mathastext.
- Under lualatex engine, it is recommended to also load the package lualatexmath.

I already mentioned in the subsubsection 1.8.2 the fact that the italic corrections were not available for OpenType fonts under the $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ engine and only partially available for the LuaTEX engine, with the result that the spacings in math mode when using for the letters an upright text font will be less satisfying than with the standard $\mathrm{PDFT}_{\mathrm{E}} \mathrm{X}$ engine (the OpenType fonts not being usable with the latter engine, this is not a criterion of choice anyhow).

To define math versions when using unicode fonts, use fontspec's \setmainfont before the \backslash Mathastext $[\langle$ version $\rangle]$ command, or simply before loading mathastext for the default math versions.

It is possible to mix usage of Unicode fonts and classical $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts. All used 8bits font encoding must have been passed as options to the fontenc package.

1.4.16 The unicodeminus option

For legacy reason, mathastext uses by default the EN DASH U +2013 for the minus sign in math mode, if the font is determined to be a "Unicode" font.

There is now the unicodeminus to use rather MINUS SIGN U+2212. ${ }^{33}$ Check its documentation on page 60 .

1.4.17 Two examples with OpenType fonts

I include here two examples which compiled successfully (a long time ago!) with $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and LuaIATEX, the first one on a Linux machine, the second one on a Mac

[^12]OS X machine.

```
\documentclass{article}
\usepackage[hscale=0.8] {geometry}
\usepackage{multicol}
\usepackage[no-math] {fontspec}
\usepackage{lmodern}
\usepackage[subdued,italic] {mathastext}
\setmainfont[Color=999999]{Verdana} \Mathastext[Verdana]
\setmainfont[Color=0000FF]{Arial} \Mathastext[Arial]
\setmainfont[Color=00FF00]{DejaVu Serif} \Mathastext[DejaVu]
\MTDeclareVersion{times}{T1}{ptm}{m}{n}
\setmainfont[Color=FFOOOO]{Andale Mono} \Mathastext[Andale]
\begin{document}
\newcommand\TEST[1]{\MTversion{#1}%
\begin{multicols}{2}
\hbox to\columnwidth{\hbox to\columnwidth{\hfil
                $abcdefghijklmnopqrstuvwxyz$\hfil}\kern-2.5em{#1}}
    \centerline{ $ABCDEFGHIJKLMNOPQRSTUVWXYZ$ }
    \centerline{ $0123456789$ }
    \centerline{ $!\,?\,*\,,\,.\,:\,;\,+\,-\,=\,(\,)\,[\,]\,\\,\#\,%
    \$\,\%\,\&\,<\,>\,\\,\{\,\}\,\backslash$ }
\columnbreak
    \centerline{ abcdefghijklmnopqrstuvwxyz }
    \centerline{ ABCDEFGHIJKLMNOPQRSTUVWXYZ }
    \centerline{ 0123456789}
    \centerline{ !\,?\,*\,,\,.\,:\,;\,+\,-\,=\,(\,)\,[\,]\,八\,\#\,%
    \$\,\%\,\&\,<\,>\,|\,\{\,\}\,\char92 }
\end{multicols}}
\begin{multicols}{2}
    \centerline{\textbf{math mode}}
\columnbreak
    \centerline{ \textbf{text} }
\end{multicols}
\TEST{DejaVu}\TEST{Verdana}\TEST{times}\TEST{Andale}
\TEST{Arial}\TEST{bold}\TEST{normal}
\end{document}
```

And now the same thing with fonts available on Mac OS X:

```
\documentclass{article}
\usepackage[hscale=0.8] {geometry}
\usepackage{multicol}
\usepackage[no-math]{fontspec}
\usepackage{lmodern}
\usepackage[subdued,italic]{mathastext}
\setmainfont[Color=FF0000]{Hoefler Text} \Mathastext[Hoefler]
\setmainfont[Color=336633]{American Typewriter}\Mathastext[Typewriter]
\setmainfont[Color=0000FF] {Herculanum} \Mathastext[Herculanum]
\setmainfont[Color=FF00FF]{Didot} \Mathastext[Didot]
\setmainfont[Color=999999]{Comic Sans MS} \Mathastext[Comic]
\begin{document}
    --- copy here the code from the previous example ---
\TEST{Didot}\TEST{Comic}\TEST{normal}\TEST{Herculanum}
```

\TEST\{Hoefler\}\TEST\{Typewriter\}\TEST\{bold\}
\end\{document\} }

1.4.18 Compatibility with other packages

Regarding the namespace of the package: all internal macros use \mst@ (or \ifmst@ for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ conditionals) as prefix. Almost all user commands have \MT prefix, the oldest ones may use \Mathastext or variants. ${ }^{34}$

Compatibility issues are often questions of who decides last. They are naturally to be expected with packages dealing with the math setting. The fix is simply to load mathastext last. In particular one should always load mathastext after amsmath (this is especially needed with Unicode engines but applies in general as well).

Any definition made in a package loaded before mathastext of the font to be used for letters or for the common characters in the ascii basic range will be overruled by the loading of mathastext. Conversely most of the set-up done by mathastext may well be overruled by packages loaded later which do math related things.
Starting with version 1.2 , mathastext makes some characters 'mathematically active' to achieve certain effects: automatic insertion of the italic corrections when using an upright text font in math (subsubsection 1.8.2), extended scope of the math alphabet commands which now apply to non-letter symbols (subsubsection 1.8.4; and also to math operator names, but this is much easier to achieve). And the (already mathematically active) right quote is modified to have some extra space added before the derivative glyph ' (see \MTprimeskip).

This mathematical activation is compatible with the \label and \ref commands in and outside of math mode.
But a difficulty arises when some other package has made the character 'catcode active' everywhere in the document. If it is detected for such a character that mathastext wishes to make 'mathematically active' that it is already 'catcode active', mathastext then checks if it is handling a Babel shorthand. If yes, it then hacks into babel support macros for that character to let it do what it desires it to do in math mode. And it does not make the character mathematically active, to the contrary it makes sure that the character is not mathematically active.

This last paragraph applies to the characters $;,:!?+-=<>()[]^{*}$ mentioned in subsubsection 1.8 .4 as 'hard non-letters'. The right tick (which is already mathematically active per default) is also handled via a similar process, and in particular is tested for being a Babel shorthand (which happens in particular with the Spanish language activeacute option).

The reason for avoiding in general for a catcode active character to be at same time mathematically active is illustrated in next shaded box.
In the case of the Spanish active ', the advantage of mathastext intervention to reset its mathcode is that in case of a faulty input as a curly right tick $\mathrm{U}+8217^{\prime}$, which LATEX will map to

[^13]’ which itself gives the catcode 12 ', it will show as curly quote in output not as prime glyph, as mathastext removes its mathematical activation. This complements the ${ }_{A_{A}} T_{\mathrm{E}} \mathrm{X}$ warnings about \backslash textquoteright being invalid in math mode.

The ascii letters can not have been made active by Babel interface (see code comments of \mst@do@activecase) so if an ascii letter is catcode active when mathastext examines it, nothing will change to its meaning.
changed: At 1.4 these actions are done for ascii letters at loading of the package or via $\backslash M T m a t h a c-$ tiveletters, which is itself done by \backslash MTversion when entering non-subdued math version. Check documentation of \MTmathactiveletters for some relevant details.

On matters of mathematical versus catcode active character tokens, here is some code, not involving mathastext, that you should not try at home:

```
\documentclass{article}
\usepackage[french] {babel}
\usepackage{mathtools}\mathtoolsset{centercolon}
\begin{document}
$:$
\end{document}
```

DO NOT DO THIS AT HOME : it creates (with pdflatex) an infinite loop. This is due to the fact that the colon is simultaneously active (this is made by babel-french at begin document) and mathematically active (done by mathtools in the preamble). The interaction gives an infinite loop.

Regarding mathematical activation, an incompatibility of another type arose with amsmath. To fix it, mathastext now replaces an inner macro of amsmath (\resetMathstrut@) with its own version.

Always load amsmath before mathastext.
Actually this last commandment was already made necessary by the use of the text endash to represent the minus sign in math mode, and, especially for Unicode engines, some aspects of the \DeclareMathOperator macro from amsmath.

New with 1.3i: mathastext patches \url of packages url and hyperref, and also \nolinkurl, to force them to do automatically \MTeverymathoff. Indeed they use math mode, and it is better to turn mathastext off for their dealings.

See the \MTeverymathoff documentation.

1.5 Math alphabets

Let us first recall fundamental facts of life, in the world of traditional $\mathrm{PDFT}_{\mathrm{E}} \mathrm{X}$ engine and $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts, as background for understanding what mathastext does in this context. People familiar with using Unicode engines and unicode-math, please be aware that the semantics there of the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ math alphabet commands are significantly modified!

- In the default $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ set-up all five of \mathrm, \mathbf, \mathit, \mathsf and \mathtt tell $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to use for their arguments specific OT1encoded fonts.
- If the document body uses, as will be the case probably with any language other than English or its variants, some other encoding such as T1 for its fonts, there is no change whatsoever to the math configuration, indeed most font packages ignore it completely.
- It is thus a priori wrong to think of these commands as switching to some body text font, although letters within their scopes will act as in a text font, and in particular obey ligatures (this also applies to operator names defined by amsmath's \backslash DeclareMathOperator which are, with some extras not mentioned here, as using \mathrm).
- These commands are completely different in spirit from the $\mathrm{LA}_{\mathrm{E}} \mathrm{X} \backslash$ textrm, \textbf, and others, which change only some font axis; indeed the math alphabet commands inherit from legacy Knuth's \rm, \bf, and others which are complete font specifiers.
- In particular when nesting, it is the inner-most which wins.
- Only mathematical characters (such as letters) which are declared to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ as being of "variable family type" react to being in the argument of a math alphabet command.
- Lowercase Greek letters are by default in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ immune to math alphabets (so \mathrm\{\pi\} induces no change in output), but the eleven uppercase Greek letters are of "variable family type" because they are picked in the OT1-encoded font also used for operator names (the one to which \mathrm maps), and they occupy the exact same slots in the OML-encoding to which \mathnormal maps! So in default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, \mathnormal $\{\backslash$ Gamma\} gives a slanted glyph. The slots occupied in OML-encoding by the lowercase Greek letters (to which encoding they are a priori assigned) give completely unrelated glyphs in the OT1-encoding, so it makes sense that the default $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ declares lowercase Greek to not react to math alphabets. Notice though, that if $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ had declared a \mathnormalbold, mapping to a bold OML-encoded font, it would have made sense to also have \alpha, \beta, etc... be of "variable family type".
- But of course even if $\backslash \mathrm{pi}$ is of such "variable family type" then \backslash mathbf $\{\backslash$ pi\} will give garbage because the default \mathbf selects an OT1-encoded font, where there is no pi glyph whatsoever and in particular not at the slot (which is 25) of π in the OML encoding!

Please keep all the above in mind when trying to understand what mathastext does with math alphabets. The most significant point described next naturally is that mathastext will sync \mathnormal, \mathrm, \mathbf, \mathit, \mathsf and \mathtt to map to the mathastext-ified body text fonts.

- \mathnormal, \mathrm, \mathbf, \mathit, \mathsf and \mathtt are modified to use the mathastext-ified text fonts; this can be disabled via defaultalphabets and related individual options, but the package always provides \backslash Mathnormal, \Mathrm, etc..., to match the mathastext font configuration (prior to $1.3 z$ za defaultalphabets and related options also caused the mathastext alphabet commands not to be defined). Recall that there may arise a "too many math alphabets" error if too many of these commands are used in the document: declaring them is not by itself the cause of the error. See the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ news entry of its 2021-11-15 release for the counter localmathalphabets (with default value 2) which can be now be used if one hits such a difficulty.
- We define a new math alphabet command \mathnormalbold which gives direct access to the bold version of the \mathnormal alphabet (rather than using either the $\backslash \mathrm{bm}$ command from the bm package or the \boldsymbol command from the amsbsy package). As it does not exist in the default $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ math font set-up, this alphabet is not subjected to the subdued option action.
- Version 1.2 of mathastext has extended the scope of the math alphabets to apply to non-alphabetical characters and to operator names. This respects the automatic white spaces added by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ around math symbols. See the devoted subsubsection 1.8.4.
- The optional extra skips around letters (see subsubsection 1.8.1 and subsubsection 1.8.2) are removed in the scope of the math alphabets.
- Depending on options, further math alphabet commands are defined by the package: \MathEulerBold, \MathEuler, \MathPSymbol, and since 1.3y under the LGRgreek family of options also \mathgreekup and \mathgreekit. See subsubsection 1.7.3. And also \mathgreekupbold and \mathgreekitbold under the LGRgreek family of options.
- With the LGRgreek+ option which enhances Greek letters with a specific behavior when in the arguments of the \mathrm, \mathbf, etc..., math alphabet commands, this special behavior is not triggered by the \Mathrm, \Mathbf, et al., which are genuine unmodifed math alphabet commands. See subsubsection 1.7.5.

1.6 Math versions

$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ has the concept of math versions ${ }^{35}$, but most font packages do not define any such version beyond the default normal and bold (the package unicode-math for unicode engines does use this concept).
mathastext extends the concept of math versions in order to allow the math mode fonts (for letters, digits, punctuation and a few other ascii symbols) used in the different parts of the document to be kept in sync with the text fonts.

Most math symbols (sums, products, integrals, logical signs, etc...) are kept the same throughout the document though as it is not in mathastext power to modify them.

For examples see the earlier subsection 1.2. The interface to define a math version includes the commands \Mathastext and \backslash MTDeclareVersion.

Once such a math versions has been defined in the preamble, \MTversion\{name_of_version\}, or equivalently \Mathastextversion\{name_of_version\}, enacts the font switches when encountered in the body of the document. As is usual with ${ }^{A} T_{E} \mathrm{X}$ one can limit the scope to inside a group, or also switch back to the main set-up via \Mathastextversion\{normal\}.
When \Mathastext is used in the preamble, it records the current text font
 similar commands) and (except for the normal and bold versions if in subdued regime) sets up both the math font and the text font in the defined mathastextmath version to be this text font. It is still possible to switch on via \backslash MTversion in the document body distinct fonts for text and math: an optional argument (the name of another mathastext-declared math version) to \MTversion is allowed (such as for example \MTversion[newcent] \{helvet\} for one of the examples of the subsection 1.2). It instructs to use as text font the font which was configured to be used in this second mathastext-math version. ${ }^{36}$

The native $\mathbb{L A}_{\mathrm{E}} \mathrm{X}$ command \backslash mathversion $\{\langle$ version_name $\rangle\}$ would change only the fonts for the math mode, not the text mode fonts. It is important to use rather the package command \MTversion (or one of its synonyms \mathastextversion, \Mathastextversion, \MTVersion), with its mandatory argument $\left\{\left\langle v e r s i o n _n a m e\right\rangle\right\}$, as it does additional actions:

- it sets the font for math mode (letters, math operator names, digits, punctuations, some other symbols) according to the version name given as mandatory

[^14]argument,

- it resets the text font of the document and the
(family,rm,sf, . .) defaults to their values as registered at the time of definition of the version. Use the starred variant in case this is not desired. As explained above tt is possible to specify within brackets an extra optional version name, and the text font will be set according to it.

For all math versions if not using the subdued option, or only for the non-normal and non-bold math versions if using the subdued option, \MTversion does further additional tasks:

- it resets the \hbar, \imath (see \inodot), \jmath, math accents (see option mathaccents) and minus sign as en dash according to the used font encoding for the mathastext-ified text font,
- (see subsubsection 1.8 .1 and subsubsection 1.8.2) it re-issues the command \backslash MTmathactiveletters to let a to z, A to Z , be mathematically active in order to automatically insert the skips as defined by the user with \MTsetmathskips, and the italic corrections (if the font is not italic or slanted),
- (see subsubsection 1.8 .3) it resets the extra spaces after the symbols \exists, \forall and before the derivative ' to the values as decided by the user in the preamble on a per version basis,
- (see subsubsection 1.8.4) it re-issues the commands \MTmathoperatorsobeymathxx and \MTeasynonlettersobeymathxx to let the math operator names and ('easy') non letter characters obey the math alphabets,
- in case of option asterisk, it re-issues \MTactiveasterisk,
- it does the additional set-up for Greek letters in case of the package received one of the Greek related options.

The scope is limited to the current $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ environment or group.
It is sometimes not compatible with mathastext to load a font package after it, as the font package may contain instructions which will modify the math set-up. This may be a bit hidden to the user: for example the epigrafica package loads pxfonts. Hence it will interfere with mathastext if it is loaded after it. ${ }^{37}$ But one can use instead \{epigrafica\}, ${ }^{38}$ followed with

[^15]\backslash Mathastext, or also \MTfamily\{epigrafica\}\Mathastext which will only change the font in math.

To use epigrafica for Greek in math mode one can use the package option LGRgreek and the command rafica\}\Mathastext.Or\usepackage\{epigrafica\}followedwith\usepackage[LGRgreek]\{mathastext\}.undefined

1.7 Greek letters

1.7.1 The Greek-related options

The Computer Modern fonts are very light and thin in comparison to many text fonts, and as a result rarely mix well with them (particularly if the Latin letters in math mode are upright). The following options are provided by mathastext:
no option: nothing is done by the package, Greek letters are the default Computer Modern ones or have been set-up by other packages; for example by the fourier package with option 'upright', which gives upright Greek letters or by the author lgrmath package.

LGRgreek: (this was substantially updated at $1.3 y$, make sure to read the new documentation at subsubsection 1.7.3) this option is for fonts which additionally to Latin letters also provide Greek letters in LGR encoding. Here is a list from a 2012 standard $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation: the Computer Modern, Latin Modern, and the CM-LGC fonts; the Greek Font Society fonts (such as GFS Didot), the epigrafica and kerkis packages, the txfontsb package which extends the txfonts package with LGR-encoded Greek letters; the Droid fonts, the DejaVu fonts, the Comfortaa font, and the Open Sans font. The LGR encoded CM/LM fonts (in serif, sans-serif and typewriter family) give the nice Greek letters in upright shape from the cbfonts package. To get these letters in your mathastext math mode, you can do the following:

```
% instructions to load the document fonts:
\usepackage{nice_font}
% and then the following:
\renewcommand{\familydefault}{cmr} % or cmss or cmtt for sans resp. mono
\usepackage[LGRgreek] {mathastext}
\renewcommand{\familydefault}{\rmdefault}
\Mathastext % this re-initializes mathastext with the nice_font,
% without changing the LGR font cmr/cmss/cmtt used for Greek letters
% in math mode.
\begin{document}
```

If you use the italic option note that the italic Greek letters from the cbfonts are not the same glyphs as the default Greek letters from the OML encoded font cmmi.

LGRgreek+: extends LGRgreek to allow abusive usage of \mathrm and alike commands with Greek letters. This is very much not in the spirit (especially with
traditional "8bit" $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts) of the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ kernel concept of math alphabet commands. Check subsubsection 1.7.5 for relevant information.
eulergreek: the Greek letters will be taken from the Euler font (the document does not have to load the eulervm package, mathastext directly uses some file included in this package, as it provides a mechanism to scale by an arbitrary factor the Euler font.) The letters are upright.
symbolgreek: the Greek letters will be taken from the (Adobe Postscript) Symbol font. A command is provided so that the user can scale the Symbol font to let it better fit with the text font. The letters are upright.
selfGreek: this option concerns only the eleven Greek capitals from the OT1encoding. It does nothing for the lowercase Greek letters. The encoding used in the document does not have to be OT1.

There is also LGRgreeks (and LGRgreeks+) which tells mathastext to pick up in each math version the letters from the LGR encoded font used in that version, and selfGreeks to tell mathastext to do as for selfGreek but separately in all math versions.

Under the subdued option the Greek letters in the normal and bold math versions are kept to their defaults as found at the time of loading the package.

The commands \MTstandardgreek allow at any point in the document to turn inactive any Greek related option passed to mathastext. And conversely \MTcus tomgreek reactivates it.

1.7.2 Shape of Greek letters

Classic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ uses in math mode italic lowercase and upright uppercase Greek letters. French typography uses upright shape for both lowercase and uppercase. And the ISO standard is to use italic shape for both lowercase and uppercase.

The Euler and Symbol fonts not being available in other than their default upright shape, this question of shapes for Greek letters raises issues only in the case of the options LGRgreek and selfGreek.

The options frenchmath, itgreek, upgreek, itGreek and upGreek modify the Greek letter shapes according to the following rules, listed from the lowest to the highest priority:
no option: the lowercase Greek letters are in the same shape as Latin letters, and the uppercase in the same shape as is applied to digits and operator names,
frenchmath: both lowercase and uppercase are in the same shape as the digits and operator names (most of the time this means "upright shape", but it can be otherwise),
itgreek : says that Greek letters (both lowercase and uppercase) will be in 'it' shape. More precisely the expansion of \MTgreekitdefault is used.
This was changed at $1.3 y$, formerly the value of \itdefault which was in force at the time of using \Mathastext (or at time of loading the package if no use is made of \Mathastext) was used.
upgreek : says that Greek letters (both lowercase and uppercase) will be in ' n ' shape. More precisely the expansion of \MTgreekupdefault is used.
This was changed at $1.3 y$, formerly the value of \updefault which was in force at the time of using \Mathastext (or at time of loading the package if no use is made of \Mathastext) was used. But since $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 2020-02-02 this caused many Font Warnings in the log because \updefault is now 'up', not ' n ' as formerly.
itGreek, upGreek: same but they apply only to the uppercase Greek letters. Their effect is computed after having taken into account either itgreek or upgreek presence.

So, the default gives the classic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ behavior when option italic was passed.
As mentioned already the package allows to define various "math versions". There are commands to be used inside the preamble to influence the shapes, and even the font, used for Greek letters in each given mathastext-declared math version: \MTitgreek, \MTupgreek, \MTitGreek, \MTupGreek and \MTgreekfont\{name_of_font\}.
Their effect is as the options of the alike name, except that the effect applies only to mathastext-math versions declared next in the preamble (be it via \Mathastext or \MTDeclareVersion).

To use \MTgreekfont you need to know the name of a suitable font family available in LGR encoding: for example lmr, txr (needs txfontsb package on your system), DejaVuSerif-TLF (needs dejavu package on your system), etc...
\MTitgreek, \MTupgreek, \MTitGreek, \MTupGreek have some effect only if one of the LGRgreek, LGRgreeks, selfGreek or selfGreeks options was passed to the package.

Once any of these commands has been made use of, changes in the shape configuration of the Latin letters will stop having any influence on the shape of the Greek letters.
\MTgreekfont has an effect only for LGRgreek and selfGreek. It is without any effect with LGRgreeks and selfGreeks.

1.7.3 Control sequences to access directly upright or italic shape for Greek under LGRgreek option

Some changes were made at $1.3 y$ to enhance the LGRgreek (and LGRgreeks) options with new features. Everything which will be explained here applies only to these two options.

First of all the package now makes available control sequences to access either the upright or italic shape of the Greek letters: \alphaup, \alphait, etc... ${ }^{39}$ Which shape is meant by 'up' or 'it' is configured via defining \MTgreekupdefault and $\backslash M T g r e e k i t d e f a u l t$ respectively prior a \backslash Mathastext command in the preamble (possibly with [〈version_name〉] optional argument). Their default definitions are to expand to ' n ' and ' it ' respectively. They can also be defined prior to loading mathastext.
See the Table 1 and Table 2 for illustrations (using here the Libertinus Serif font).

\backslash Alphaup A	\backslash Xiup Ξ	\alphaup α	\xiup ξ
\Betaup B	\backslash Omicronup O	\betaup β	\omicronup o
\Gammaup Γ	\backslash Piup Π	\gammaup γ	\backslash piup π
\backslash Deltaup Δ	\backslash Rhoup P	\backslash deltaup δ	\backslash rhoup ρ
\backslash Epsilonup E	\backslash Sigmaup Σ	\epsilonup ع	\backslash sigmaup σ
\Zetaup Z	\backslash Tauup T	\zetaup ζ	\backslash tauup τ
\backslash Etaup H	\Upsilonup Y	\etaup η	\upsilonup v
\Thetaup Θ	\backslash Phiup Φ	\thetaup θ	\backslash phiup ϕ
\Iotaup I	\backslash Chiup X	\iotaup	\backslash chiup χ
\backslash Kappaup K	\backslash Psiup Ψ	\backslash kappaup к	$\backslash \mathrm{psiup} \psi$
\backslash Lambdaup Λ	\backslash Omegaup Ω	\backslash lambdaup λ	\omegaup ω
\Muup M	\backslash Digammaup F	\backslash muup μ	\backslash digammaup F
\backslash Nuup N		\backslash nuup v	\backslash varsigmaup ऽ

Table 1: Greek letters via 'up' control sequences (math mode only)
The regular control sequences without 'up' or 'it' postfix will map to either one of the two versions according to how the shapes were configured, i.e. in almost all cases via usage of either the itgreek, upgreek, etc... options or \MTitgreek et al. commands. This is on a per mathastext-enriched math version basis, depending only on how the options or commands were used in the preamble.

Furthermore two math alphabets are provided

> \mathgreekup

[^16]| \backslash Alphait A | \Xiit Ξ | \alphait α | \xiit ξ |
| :---: | :---: | :---: | :---: |
| \backslash Betait B | \backslash Omicronit O | \betait β | lomicronit o |
| \Gammait Γ | \backslash Piit Π | \gammait γ | \backslash piit π |
| \backslash Deltait Δ | \backslash Rhoit P | \deltait δ | \backslash rhoit ρ |
| \backslash Epsilonit E | \backslash Sigmait Σ | lepsilonit ε | \backslash sigmait σ |
| \backslash Zetait Z | \backslash Tauit T | \zetait ζ | \tauit τ |
| \backslash Etait H | \backslash Upsilonit Y | \etait η | \upsilonit v |
| \backslash Thetait Θ | \backslash Phiit Φ | \thetait θ | \backslash phiit ϕ |
| \backslash Iotait I | \backslash Chiit X | \iotait ι | \chiit χ |
| \Kappait K | \backslash Psiit Ψ | \backslash kappait κ | \psiit ψ |
| \backslash Lambdait Λ | \Omegait Ω | \backslash lambdait λ | lomegait ω |
| \backslash Muit M | \backslash Digammait F | \backslash muit μ | \backslash digammait F |
| \backslash Nuit N | | \nuit v | \varsigmait ς |

Table 2: Greek letters via 'it' control sequences (math mode only)
\mathgreekit
which can be used to map a letter to the corresponding Greek fonts:

```
\$\mathgreekup\{a\}=\mathgreekup\{\alpha\}=\mathgreekup\{\alphait\}=\alphaup\$
    \(\alpha=\alpha=\alpha=\alpha\)
\$\mathgreekup\{G\}=\mathgreekup\{ \(\backslash\) Gamma \(=\backslash\) mathgreekup \(\{\backslash\) Gammait \(\}=\backslash\) Gammaup \(\$\)
    \(\Gamma=\Gamma=\Gamma=\Gamma\)
    \$\mathgreekit \(\{\mathrm{z}\}=\) =mathgreekit \(\{\backslash\) zeta\}=\mathgreekit \(\{\backslash\) zetaup \(\}=\backslash\) zetait \(\$\)
    \(\zeta=\zeta=\zeta=\zeta\)
\$\mathgreekit\{W\}=\mathgreekit\{\Omega\}=\mathgreekit \(\{\backslash\) Omegaup\}=\Omegait\$
    \(\Omega=\Omega=\Omega=\Omega\)
```

Some refactoring ${ }^{40}$ was required to achieve this at $1.3 y$ and it is not 100% backwards compatible: if none of the itgreek etc... things was used, the Greek letters formerly would follow the shape of Latin letters (for lowercase Greek) and of operator names (for uppercase Greek). Now, some check is made for each of these two shapes whether it is 'it' or 'sl' and then the 'italic' shape, i.e. \MTgreekitdefault which by default is 'it' (without the quotes) is used, else the 'upright' shape, i.e. \backslash MTgreekupdefault which by default expands to ' n ' (without the quotes) is used. Naturally these checks are done on a per mathastext-math version basis, if multiple math versions are used.

So for example those who used some adventurous 'sc' for the main shape (the one used per default for operator names) and used the option LGRgreek but none of the itgreek et al. options, and none of the \MTitgreek et al. commands, now will

[^17]need to adjust \MTgreekupdefault to expand to 'sc' prior to some \Mathastext or \Mathastext[〈version_name〉] or \MTDeclareVersion in the preamble depending on context.
It is hoped most documents, even those using multiple math versions, which made use of the LGRgreek (or LGRgreeks) option will simply produce unmodified output. Please report to the author unexpected results not fitting the above attempted description of the only partial backwards compatibility.

1.7.4 \mathgreekupbold and \mathgreekitbold

Again this applies only to LGRgreek and LGRgreeks options (and the 1.3za added LGRgreek+ and LGRgreeks+).
See the Table 3 and Table 4 for illustration of usage (in math mode only) of code such as

```
    \mathgreekupbold{\alpha}
or \mathgreekitbold{\alpha}
```

Note that all three of \alpha, \alphaup and \alphait would give the same output. These two tables again use the Libertinus Serif font via an mathastext math version which was configured in the preamble using this set-up (and the package LGRgreek option):

```
\MTfamily{LibertinusSerif-TLF}
\MTlettershape{n}
\MTseries{m}
\MTgreekfont{LibertinusSerif-TLF}
\MTupgreek
\Mathastext[libertinus]
```

Some examples here to illustrate the effet of the math alphabet commands on Latin letters also:

$$
\begin{aligned}
& \text { \$\mathgreekupbold\{a\}=\mathgreekupbold\{\alpha\}\$ } \\
& \alpha=\boldsymbol{\alpha} \\
& \text { \$\mathgreekupbold\{G\}=\mathgreekupbold\{\Gamma\}\$ } \\
& \Gamma=\Gamma \\
& \text { \$\mathgreekitbold\{z\}=\mathgreekitbold\{\zeta\}\$ } \\
& \zeta=\zeta \\
& \text { \$\mathgreekitbold\{W\}=\mathgreekitbold\{\Omega\}\$ } \\
& \Omega=\Omega
\end{aligned}
$$

1.7.5 Special behavior of \backslash mathrm, \mathbf, \mathit with Greek letters via the LGRgreek+ option

With option LGRgreek+ or LGRgreeks+, mathastext makes Greek letters control sequences \alpha, \beta, ... (but not \alphaup or \betait and the others) react

\backslash Alpha \rightarrow A	$\backslash \mathrm{Xi} \rightarrow \boldsymbol{\Xi}$	\alpha $\rightarrow \boldsymbol{\alpha}$	$\backslash \mathrm{xi} \rightarrow \boldsymbol{\xi}$
\backslash Beta \rightarrow B	\backslash Omicron $\rightarrow \mathbf{O}$	\beta $\rightarrow \boldsymbol{\beta}$	\omicron $\rightarrow \mathbf{0}$
\backslash Gamma $\rightarrow \boldsymbol{\Gamma}$	$\backslash \mathrm{Pi} \rightarrow \boldsymbol{\Pi}$	\gamma $\rightarrow \boldsymbol{\gamma}$	\pi $\rightarrow \boldsymbol{\pi}$
\backslash Delta $\rightarrow \Delta$	\backslash Rho $\rightarrow \mathbf{P}$	\delta $\rightarrow \boldsymbol{\delta}$	\backslash rho $\rightarrow \boldsymbol{\rho}$
\backslash Epsilon $\rightarrow \mathbf{E}$	\backslash Sigma $\rightarrow \boldsymbol{\Sigma}$	\epsilon $\rightarrow \boldsymbol{\varepsilon}$	\backslash sigma $\rightarrow \boldsymbol{\sigma}$
\backslash Zeta \rightarrow Z	\backslash Tau \rightarrow T	\zeta \rightarrow ¢	\backslash tau $\rightarrow \boldsymbol{\tau}$
\backslash Eta $\rightarrow \mathbf{H}$	\backslash Upsilon $\rightarrow \mathbf{Y}$	leta $\rightarrow \boldsymbol{\eta}$	\upsilon $\rightarrow \boldsymbol{v}$
\Theta $\rightarrow \boldsymbol{\Theta}$	$\backslash \mathrm{Phi} \rightarrow \boldsymbol{\Phi}$	\theta $\rightarrow \boldsymbol{\theta}$	$\backslash \mathrm{phi} \rightarrow \boldsymbol{\phi}$
\backslash Iota \rightarrow I	\backslash Chi \rightarrow X	\iota $\rightarrow \mathbf{l}$	\backslash chi $\rightarrow \chi$
\backslash Kappa $\rightarrow \mathbf{K}$	\backslash Psi $\rightarrow \Psi$	\backslash kappa $\rightarrow \boldsymbol{\kappa}$	$\backslash \mathrm{psi} \rightarrow \boldsymbol{\psi}$
\backslash Lambda $\rightarrow \boldsymbol{\Lambda}$	\backslash Omega $\rightarrow \boldsymbol{\Omega}$	$\backslash \mathrm{lambda} \rightarrow \boldsymbol{\lambda}$	\omega $\rightarrow \boldsymbol{\omega}$
$\backslash \mathrm{Mu} \rightarrow \mathbf{M}$	\backslash Digamma $\rightarrow \mathbf{F}$	$\backslash \mathrm{mu} \rightarrow \boldsymbol{\mu}$	\backslash digamma $\rightarrow F$
$\backslash \mathrm{Nu} \rightarrow \mathbf{N}$		$\backslash \mathrm{nu} \rightarrow \boldsymbol{v}$	\varsigma $\rightarrow \mathbf{S}$

Table 3: Greek control sequences in the argument of \mathgreekupbold.

\backslash Alpha \rightarrow A	$\backslash \mathrm{Xi} \rightarrow \boldsymbol{\Xi}$	\alpha $\rightarrow \boldsymbol{\alpha}$	$\backslash \mathrm{xi} \rightarrow \boldsymbol{\xi}$
\backslash Beta $\rightarrow \boldsymbol{B}$	\backslash Omicron $\rightarrow \boldsymbol{O}$	\backslash beta $\rightarrow \boldsymbol{\beta}$	\omicron $\rightarrow \boldsymbol{o}$
$\backslash \mathrm{Gamma} \rightarrow \boldsymbol{\Gamma}$	$\backslash \mathrm{Pi} \rightarrow \Pi$	$\backslash \mathrm{gamma} \rightarrow \gamma$	$\backslash \mathrm{pi} \rightarrow \boldsymbol{\pi}$
\backslash Delta $\rightarrow \Delta$	\backslash Rho $\rightarrow \boldsymbol{P}$	\delta $\rightarrow \boldsymbol{\delta}$	\backslash rho $\rightarrow \boldsymbol{\rho}$
\backslash Epsilon $\rightarrow \boldsymbol{E}$	\backslash Sigma $\rightarrow \boldsymbol{\Sigma}$	\epsilon $\boldsymbol{\rightarrow} \boldsymbol{\varepsilon}$	\backslash sigma $\rightarrow \boldsymbol{\sigma}$
\backslash Zeta $\rightarrow \boldsymbol{Z}$	\backslash Tau $\rightarrow \boldsymbol{T}$	\zeta \rightarrow ¢	\backslash tau $\rightarrow \boldsymbol{\tau}$
$\backslash \mathrm{Eta} \rightarrow \boldsymbol{H}$	\backslash Upsilon $\rightarrow \boldsymbol{Y}$	leta $\rightarrow \boldsymbol{\eta}$	\upsilon $\rightarrow \boldsymbol{v}$
\Theta $\rightarrow \boldsymbol{\Theta}$	$\backslash \mathrm{Phi} \rightarrow \boldsymbol{\Phi}$	\backslash theta $\rightarrow \boldsymbol{\theta}$	$\backslash \mathrm{phi} \rightarrow \boldsymbol{\phi}$
\backslash Iota $\rightarrow \boldsymbol{I}$	\backslash Chi $\rightarrow \boldsymbol{X}$	\iota $\rightarrow \boldsymbol{t}$	\chi $\rightarrow \chi$
\backslash Карра $\rightarrow \boldsymbol{K}$	$\backslash \mathrm{Psi} \rightarrow \boldsymbol{\Psi}$	\backslash kappa $\rightarrow \boldsymbol{\kappa}$	$\backslash \mathrm{psi} \rightarrow \boldsymbol{\psi}$
\backslash Lambda $\rightarrow \boldsymbol{\Lambda}$	\Omega $\rightarrow \boldsymbol{\Omega}$	$\backslash \mathrm{lambda} \rightarrow \boldsymbol{\lambda}$	\omega $\rightarrow \boldsymbol{\omega}$
$\backslash \mathrm{Mu} \rightarrow \boldsymbol{M}$	\backslash Digamma \rightarrow N/A	$\backslash \mathrm{mu} \rightarrow \boldsymbol{\mu}$	\digamma \rightarrow N/A
$\backslash \mathrm{Nu} \rightarrow \boldsymbol{N}$		$\backslash \mathrm{nu} \rightarrow \boldsymbol{v}$	\backslash varsigma $\rightarrow \boldsymbol{S}$

Table 4: Greek control sequences in the argument of the \mathgreekitbold command. This font has no bold italic Digamma nor digamma (last tested 2023/12/19).
in a special manner within the scope of \mathnormal, \mathrm, \mathit, \mathbf, and \mathnormalbold, but not further math alphabet commands, and not when using the mathastext defined commands named with an uppercased initial.

Here is an example

	$a b C D \alpha \pi \Delta \Gamma$
mathnormal	$a b C D \alpha \pi \Delta \Gamma$
mathrm	$a b C D \alpha \pi \Delta \Gamma$
mathit	$a b C D \alpha \pi \Delta \Gamma$
mathbf	$\mathbf{a b C D} \boldsymbol{\alpha} \pi \Delta \Gamma$

It used this source:

```
\[\def\zzz{abCD\alpha\pi\Delta\Gamma}
    \begin{array}{rc}
        &\zzz\\
        mathnormal& \mathnormal{\zzz}\\\
        mathrm& \mathrm{\zzz}\\%% \mathrm on Greek is like \mathgreekup
        mathit& \mathit{\zzz}\\\% \mathit on Greek is like \mathgreekit
        mathbf& \mathbf{\zzz}\\%% \mathbf on Greek is like \mathgreekupbold
        mathnormalbold& \mathnormalbold{\zzz}\\\
        mathgreekup& \mathgreekup{\zzz}\\\%
        mathgreekit& \mathgreekit{\zzz}\\%%
        mathgreekupbold& \mathgreekupbold{\zzz}\\%%
        mathgreekitbold& \mathgreekitbold{\zzz}%
    \end{array}
\]
```

This was typeset here using a "libertinustexstyle" math version which (differently from the one used in an earlier section) has the default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ settings for the shape of Latin and Greek letters: i.e. italic Latin and lowercase Greek, upright uppercase Greek. Its preamble definition was something like this:

```
\MTfamily{LibertinusSerif-TLF}
\MTgreekfont{LibertinusSerif-TLF}
\MTlettershape{it}% not needed with italic option if nothing was changed prior
\MTitgreek\MTupGreek% this is also the default configuration
\Mathastext[libertinustexstyle]
```

The difference with using only LGRgreek option is that with the latter the Latin math alphabets such as \mathrm, \mathit, \mathbf produce a Latin letter when acting on a Greek control sequence, as the latter are defined by mathastext under LGRgreek to be of "variable family type" for usage with \mathgreekup and
\mathgreekit. With LGRgreek+, the Greek control sequences are not mathchar tokens anymore but macros with conditionals detecting some flag set by custom \mathnormal, \mathnormalbold, \mathrm, \mathit, and \mathbf.
mathastext has no logical way to sync shape of Latin and Greek letters once usage has been made of Greek related commands. Hence \mathnormal is currently configured to do nothing on Greek letters. This may change, please consider this behavior unstable.

Remark: this LGRgreek+ functionality is considered by its author an abuse of the concept of a math alphabet command and required accomodating a serious deviation from internal logical design of mathastext. I don't know if it is because $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ documentations are deficient or misleading on such matters but it appears many $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ users are surprised when $\$ \backslash$ mathrm $\{\backslash \mathrm{pi}\} \$$ does not give an upright pi letter but this is completely to be expected in a world with fonts having only 128 or 256 glyphs, and from the fact that \mathrm and \mathbf originate in Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X} \backslash \mathrm{rm}$ and $\backslash \mathrm{bf}$ and are still quite akin to it, they are font switching commands nothing more or less.

1.8 Advanced capacities

Some such capacities are on per default (but if with subdued option will be turned off in the normal and bold math versions), others require an action from the user for activation.

1.8.1 Extra spaces around letters

This is a new feature ${ }^{41}$ added with release 1.3: the command $\backslash M T s e t m a t h s k i p s$ allows the user to set up some spaces (more precisely, 'mu glue'; but stretch and shrink are discarded) to be automatically inserted around the letters in math mode. Some (very) unrealistic uses:
\% this may be anywhere in the document (also within a math group):
\MTsetmathskips\{x\}\{20.33mu\}\{15.66mu\}\% 20.33mu before all x's and 15.66 mu after.
\MTsetmathskips\{y\}\{\thickmuskip\}\{\thickmuskip\}\%
\backslash MTsetmathskips\{z\}\{10mu\}\{5mu\}\% stretch and shrink are anyhow without effect.
\MTsetmathskips\{A\}\{\muexpr \thickmuskip*2\}\{\muexpr \medmuskip-\thinmuskip/2\}\%
Here is what $\$ w x t y t z^{\wedge}\{w x t y t z\}=\mathrm{BAC}^{\wedge}\{\mathrm{BAC}\} \$$ then gives using the Times font: $w x^{2}$ tyt $z^{w} x$ tytz $=B A C^{B A C}$. Any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group or $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ environment limits as usual the scope of this command. Furthermore the command \MTunsetmathskips cancels previous use of \MTsetmathskips for a given letter.

The implementation relies on the 'mathematical activation' of letters, which is done by default by the package since release 1.2 b . Should this cause compatibility

[^18]automatically (as part of \MTicinmath) by mathastext when loaded (if not with subdued option), and also each time the package enhanced math-version-switch command \MTversion is used, except for the normal and bold math versions under the subdued option.

The extra skips are set at natural width; they do not contribute to the overall stretchability or shrinkability of the math formula and do not create break points.

Changed with 1.3i: they are not applied within the scope of math alphabet commands.

1.8.2 Background on italic corrections in math mode

Note: this is somewhat technical discussion which may well be skipped in its entirety on first reading.

With the italic option the letters in math will be generally in italic shape (and, normally, upright in operator names).

For the built-in placement routines of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ in math mode to work as well as they usually do, the characters from the math italic font obviously should have their bounding boxes wide enough for the glyphs not to collide with other symbols. A letter from a text italic font such as f extends way out of its declared bounding box; let us compare the bounding boxes ${ }^{42}$ for the letter f in the math italic font to the one from the text italic font: $[f]$ vs. $f f$.

This could make us think that attempting to use in math a text italic font will lead to disaster. Well, surprisingly the situation is not that bad. Sure $\$ \mathrm{f}(\mathrm{x}) \$$ is wider with the standard math italic $f(x)(21.31474 \mathrm{pt})$ than it is with the text italic font used in math: ${ }^{43} f(x)(19.74986 \mathrm{pt})$ but we should be surprised that our text italic f did not end up even closer to the opening parenthesis. Why is it so?

The explanation is that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ uses in such a situation the italic correction for the letter f. The italic correction also exists and is used for the math italic font, it was inserted in $\$ \mathrm{f} \$$ without us having to ask anything. Its value is 1.17865 pt for the math italic f and 1.8919 pt for the text italic $f .{ }^{44}$ With the italic corrections included our bounding boxes are indeed more alike: $[f]$ vs $f f$.

Without the italic corrections ${ }^{45}$ it is \nexists vs \llbracket. I said that $\$ \mathrm{f} \$$ included the italic correction automatically, but if we tell $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to use the text italic in math, and typeset the alphabet, we obtain something exactly identical to typing the letters in text, hence without any italic correction:

[^19]| abcdefghijklmnopqrstuvwxyz | text italic in text |
| :--- | :--- |
| abcdefghijklmnopqrstuvwxyz | text italic in math |
| abcdefghijklmnopqrstuvwxyz | math italic in math |
| abcdefghijklmnopqrstuvwxyz | math italic in text |

Where are our italic corrections gone? the last line was done with \usefont $\{0 \mathrm{ML}\}\{\mathrm{mlmm}\}\{\mathrm{m}\}\{\mathrm{it}\}$ and the line before that using math mode is longer and confirms that italic corrections have been used for the math italic in math mode.

Turning to the $\mathrm{T}_{\mathrm{E}} \mathrm{Xbook}$ (and its Appendix G) we learn that in such circumstances, for the italic corrections to be put in from the font, one of its parameters, the interword space (aka \backslash fontdimen2), should be zero. It is indeed zero for the math italic font, not for the text italic.

It is possible to make $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ believe it is. Doing so, we obtain in math mode with the text italic:

$$
\begin{array}{ll}
\text { abcdefghijklmnopqrstuvwxyz } & \text { text italic in math } \\
\text { abcdefghijklmnopqrstuvwxyz } & \text { math italic in math }
\end{array}
$$

We saw that the italic correction was taken into acount automatically (independently of the value of the interword space font parameter) in expressions such as $\$ f(x) \$$. Another clever thing done by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is to use it for the placement of superscripts; the next examples systematically use the text italic in math. We see that f^{j} is very different from f^{j}... where the latter was coded with $\$ \backslash$ hbox $\{\backslash$ itshape $f\}{ }^{\wedge} j \$$. The inputs $\$ \backslash$ mathit $\left\{\backslash\right.$ hbox $\left.\{\backslash i t s h a p e ~ f \ /\}^{\wedge} j\right\} \$$ and $\$ \backslash$ mathit $\left\{f^{\wedge} j\right\} \$$ give almost identical results: $\left[f^{\jmath}\right]$ vs. $\left[f^{j}\right.$. Close examination reveals that the horizontal spacing is exactly identical, however the exponent in the second case is a bit lower. Anyway, the point is that in the second case the italic correction for f was indeed used.

Subscripts are another matter: they do not take into account the italic correction. For example $\$ \backslash$ mathit $\left\{f_{-} i\right\} \$$ gives the same horizontal positions as $\$ \backslash$ mathit $\left\{\backslash\right.$ hbox $\{\backslash$ itshape $f\} _$i $\} \$: f_{i}$ vs. f_{i}. Printing them one on another gives f_{i} and reveals (use the zoom of your viewer!) that only the vertical placement was affected, not the horizontal placement.

We learn in Appendix G of the $\mathrm{T}_{\mathrm{E}} \mathrm{Xbook}$ that the italic correction is used for the horizontal shift of the superscript with respect to the position of the subscript: f_{i}^{j}, or, going back now to the standard math italics f_{i}^{j}. In the next paragraphs we use f_{i}^{i} for more accurate comparison of the positioning of the sub- and superscript.
If we try something like this: $\$\{f \backslash /\} \mathcal{I}^{1}{ }^{\wedge} i \$$ we obtain f_{i}^{i}. Our overlapping game with $\backslash \mathrm{rlap}\left\{\$ \mathrm{f}_{-} \mathrm{i}^{\wedge} \mathrm{i} \$\right\} \$\{\mathrm{f} \backslash /\}_{-} \mathrm{i}^{\wedge} \mathrm{i} \$$ gives $f_{\dot{i}}^{i}$. We discover that the effect of the explicit italic correction has mainly been to translate the subscript horizontally to be positioned exactly below the superscript! ${ }^{46}$ We most probably do not want this to happen for our indices and exponents in math mode. So perhaps we can rejoice in how astute $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has been in judiciously using the italic correction data, and there seems to be no need into fiddling with this algorithm which seems to work well even when applied to a text italic font. Actually we may even be of the opinion that the

[^20]text italic version f_{i}^{i} is a bit better-looking than the true math italic $f_{i}^{i} \ldots$
But wait... mathastext was initially developed to easily use in math mode the document text font not in its italic variant, but as is, so, usually, upright. And upright $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts may also have italic correction data! And what I just said about the shift of the superscript with respect to the subscript apply equally well to such a font, if $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has been told to use it. Let's try Latin Modern Upright for letters in math: $\$ f_{i} i^{\wedge} i \$$ now gives ${ }^{47} f_{i}^{i}$. We see the italic correction in action for the positioning of the superscript! Compare with $\$ \backslash$ mathrm $\left\{\backslash h b o x\{f\} _i \wedge i\right\} \$$: $\mathrm{f}_{\mathrm{i}}^{\mathrm{i}}$. Overlapping with $\backslash \mathrm{rlap}\{\$ \backslash$ mathrm\{f_i^i\}\$\}\$\mathrm\{ $\{$ hbox\{f\}_i^i\}\$ gives f_{i}^{i} and shows that the upright f has an italic correction which was used to shift the superscript to the right (and it is now in a slightly lower position). Let's now do $\$ \backslash$ mathrm\{\{f $\left.\backslash /\} _i^{\wedge} i\right\} \$$: this gives f_{i}^{i} and the subscript is shifted to the right, and is now on the same vertical axis as the superscript. There are also some slight vertical

People will tell me crazy, but if we decide for using upright fonts in math, wouldn't it be satisfying to have the subscript and superscript positioned on the same vertical axis? the letter has no slant, why should the indices display one?

We end up in this strange situation that it is attractive to systematically incorporate the italic corrections after the upright Latin letters in math! But we don't want to do this inside the arguments to math alphabets as this would make impossible the formation of ligatures (the standard $\$ \backslash$ mathrm\{ff $\} \$$, $\$ \backslash$ mathit $\{f f\} \$$, $\$ \backslash m a t h b f\{f f\} \$$, \$\mathsf\{ff\}\$ all give ligatures ff, ff, ff, and ff and we would like to preserve this behavior).

Starting with version v1.2b, mathastext adds the italic correction automatically after each letter of the Latin alphabet in math mode, except when these letters are italic or slanted. ${ }^{48}$
These italic corrections are canceled inside the arguments to the math alphabet commands, to allow the formation of ligatures as is expected in the standard default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ font set-up in math.

The feature-implementing commands \MTicinmath, \MTnoicinmath, \MTicalsoinmathxx are described in subsubsection 2.2.2.

Note: from brief testing on 2012/12/28, $X_{B} T_{E} X$ seems not to obey in math mode italic corrections for OpenType fonts. Hence the $T_{E} X$ placement algorithms for math mode described in this section do not work well when an OpenType (text) font is

[^21]used for the letters in math mode, and the document is compiled with the engine.OntheotherhandLuaLAT${}_{E}X$seemstoimplementtheitaliccorrectionswhenusingOpenTypefonts,butonlywithitalicfonts(asfarasIcouldtell).Trythefollowing(whichwillusetheOpenTypeLatinModernfont)onarecent$T_{E}X$installationandcomparetheoutputofbothengines:\documentclass\{article\}\usepackage\{fontspec\}\begin\{document\}}\Huge\$\mathit\{f_i^i\}\$\par\$\mathrm\{f_i^i\}\$\end\{document\}}CommentoutthefontspeclineandusepdfLA$T_{E}X$.Allthreeoutputsaredifferentonmy$T_{E}X$installation.X$\boldsymbol{Z}_{E}X$doesnothavetheitaliccorrections.Luala$T_{E}X$does,butonlyfortheitalicfont.pdfLATEXhasthemforboththeitalicandtheuprightfont.49undefined

1.8.3 Extra glue after \exists, \forall, and before the prime glyph

 a mandatory argument like for example 3mu plus 1 mu minus 1 mu or just 2.5 mu . They are especially useful when using an upright font in math mode. The mu is a unit length used in math mode ('math unit', $1 / 18$ th of the 'quad' value of the symbol font in the current style). Its value is relative to the current math style. Its use is mandatory in the commands described here.

- compare $\forall \mathrm{B}$ with $\forall \mathrm{B}$, typeset after \backslash MTforallskip\{2mu\},
- compare $\exists \mathrm{N}$ with $\exists \mathrm{N}$, typeset after \backslash MTexistsskip\{2mu\},
- and finally compare f^{\prime} with f^{\prime}, typeset after \backslash MTprimeskip\{2mu\}.

These three commands may be used throughout the document, or also in the preamble, in which case the declared math versions will record the then current values of the skips. mathastext applies the following (small) default skips: 0.6667 mu for the skip after $\forall 1 \mathrm{mu}$ for the skip after \exists, and 0.5 mu for the skip before the prime. The examples above become $\forall \mathrm{B}, \exists \mathrm{N}$ and $\mathrm{f}^{\prime} .{ }^{50}$

With the italic option the defaults are set to zero. Indeed $\forall B, \exists N$ and f^{\prime} look fine without additional skips. If the document decides then to declare in the preamble a math version with an upright font it is thus recommended to use the commands in the preamble before the \Mathastext[〈version_name〉] (or \MTDeclareVersion) command defining the version. They will be remembered when this

[^22]math version is entered in the document. The commands may also be used directly in the document body.

Under the subdued option, the normal math version (at the start of the document body, or after \MTversion\{normal\}) and the bold math version (either at the start of the document body after \boldmath, or after \MTversion\{bold\}) do not have any extra skip inserted (even one of zero width) after \forall, \exists, or before the ${ }^{\prime}$.

1.8.4 Extended scope of the math alphabets commands

Ever since the initial version of the package, some characters usually unaffected by the math alphabet commands \mathbf, \mathtt, \mathsf... are declared to be of 'variable family type', in order for them to obey these commands: for example the hash sign \# gives \# if input as $\$ \backslash$ mathbf $\{\backslash \#\} \$$ (mathastext, especially in its beginnings, wanted as many characters as possible to be picked up from the text font and to behave similarly to letters and digits).

So it was especially frustrating that mathematical characters such as + , or $<$, or] could not be declared of 'variable family' (in addition to being picked up in the text font) as this would, for reasons of the inner workings of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, not be compatible with the automatically inserted spaces around them.

A revolutionary ;-) novelty is introduced with version 1.2 of the package:

1. the pre-declared or user-declared (using the amsmath \DeclareMathOperator or equivalent) operator names obey the math alphabet commands, ${ }^{51}$
2. as well as all non alphabetical characters treated by mathastext.

The non-letters handled by mathastext (if not disabled by options) fall into two groups:

- Those to which $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ associates some specific spacings:

$$
!?,: ;+-=()[]<>\{ \} *
$$

We call them the "hard" ones.

- Those for which $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ uses so-called ordinary spacings:
. / \ \# \$ \% \&
We call them the "easy" ones.
The "easy" non-letters are handled easily by mathastext, simply by declaring them to be of "variable family type". This will be done automatically. ${ }^{52}$

The "hard" non-letters require a more complex approach using a concept called "mathematical activation". For reasons explained next, this is not done automat-

[^23]ically and requires the user to employ the command \MTnonlettersobeymathxx (or, for the specific case of the asterisk the option asterisk).

It is a fundamental feature that the spacing added by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ before and after each such mathastext-ified non-letter is in no way modified.

Let us compare, for example, the new behavior of \mathtt and \mathbf when \backslash MTnonlettersobeymathxx has been used

$$
n e w: \quad(\sin (n!)<\cos (m-p) ?) \quad[\sin (x+y)=\cos (z-t)]
$$

with the traditional default behavior one observes without mathastext or in subdued normal or bold math version:

$$
\text { standard : } \quad(\sin (n!)<\cos (m-p) ?) \quad[\sin (\mathbf{x}+\mathbf{y})=\cos (\mathbf{z}-\mathbf{t})]
$$

The commands for deactivation are:
\MTmathoperatorsdonotobeymathxx,
$\backslash M T e a s y n o n l e t t e r s d o n o t o b e y m a t h x x$,
\backslash MTnonlettersdonotobeymathxx, and those for activation:
\backslash MTmathoperatorsobeymathxx (done by default),
\backslash MTeasynonlettersobeymathxx (done by default),
$\backslash M T n o n l e t t e r s o b e y m a t h x x$ is not done by default (see explanations why in the shaded box next) and applies to the "hard" non-letters mentioned above and also to \mid and \setminus. Furthermore, it applies to the braces $\}$ only if \backslash MTexplicitbracesobeymathxx is also used.

Important: the package does not execute on its own \MTnonlettersobeymathxx. The reason is that the mechanism in effet replaces the original "hard" characters such as ?, [, < by (in math mode only) a more complex structure, which ceases looking to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ as only one token, and as a consequence $\$ x^{\wedge} ? \$, \$ R^{\wedge}+\$$ or $\$ \backslash$ mathopen<A \backslash mathclose $>\$$ raise an error, the workaround being to employ additional braces: $\$ \mathrm{x}^{\wedge}\{?\} \$, \$ \mathrm{R}^{\wedge}\{+\} \$$ and \$\mathopen\{<\}A\mathclose\{>\}\$.

Similarly $\$ R^{\wedge} * \$$ does not work anymore under option asterisk, the user is supposed to know that with this option $\$ R^{\wedge}\{*\} \$$ is the mark-up to use.

Thus, if one adds
package\{mathastext\}\MTnonlettersobeymathxxtoapre-existingdocument,itisneededtocheckifthemark-upsatisfiestotheaboveguidelines.Forthisreasonthemechanismisbydefaultnotactivatedandtheuserhastoexecute:undefined

\MTnonlettersobeymathxx

This can be done in the preamble and will trigger actual modifications only at time of \begin\{document\}. }

Some TEXnical notes: ${ }^{53}$

- The asterisk $*$ is associated with its own option asterisk, because independently of the matter of its behavior in the scope of math alphabets commands, its handling by mathastext (via the \MTlowerast associated configuration) always requires it to be made mathematically active and to expand to a more complex structure. So once this option is received by the package, it goes full steam and also adds by default the responsiveness to math alphabet commands (in non-subdued math versions).
- The legacy situation which is a bit late to change is that the responsiveness of the asterisk to math alphabets being on by default under option asterisk, it was decided that this responsiveness would be turned off by \MTeasynonlettersdonotobeymathxx and back on by \MTeasynonlettersobeymathxx, although the $*$ is part of the "hard" non-letters. One can use \MTnormalasterisk to stop the $*$ to obey math alphabet commands, but it also cancels the \MTlowerast mechanism.
changed:
- At 1.4 "easy" non-letters found out to be (at \begin\{document\} or with } \backslash MTversion ex- cept for subdued normal or bold) mathematically active characters will not get overridden by mathastext. This applies for example with the dot "." under babel with Spanish language. Its special behavior to transform into a comma "," if before a digit is now kept. As an amusing side note, if \MTnonlettersobeymathxx is used, this comma does obey math alphabet commands.
- An "easy" non-letter which (at \begin\{document\} or with \MTversion except for subdued } normal or bold) is catcode active will still be set by mathastext to be of "variable family type", if it is not mathematically active. The catcode status is not checked nor modified, only the mathcode as per previous item. Now whether the mathastext-ification has any effect depends on how the user has configured the catcode active character to behave if in math mode.
- When mathastext wants to employ mathematical activation for a non-letter character among the "hard" cases (inclusive of the asterisk), which is done at \begin\{document\} }
 this character is currently catcode active. If this is the case, it then checks if the character is a babel shorthand. If yes, it then hooks into babel internals to modify the way this shorthand acts in math mode, so that now the character will respond to math alphabet commands. If however the catcode active character does not appear to be a babel shorthand, then mathastext does not do anything at all (beyond its general business at package loading time to set-up the font used for the non-active token). In relation to this context mathastext should always be loaded after babel. And also after the amsmath package.
- The braces $\backslash\{$ and $\backslash\}$ remain unresponsive to the alphabet changing commands even after \MTnonlettersobeymathxx. The user must employ for this

\backslash MTexplicitbracesobeymathxx

This has the disadvantage that $\backslash\{$ and $\backslash\}$ become then unusable as variable-size delimiters: \backslash big $\backslash\{$ or \backslash big $\backslash\}$ create errors and one must make use of \backslash big $\backslash l b r a c e$ and \backslash big \backslash rbrace. But one can now enjoy $\{\mathrm{a}, \mathrm{a}>\mathrm{b}\},\{\mathrm{a}, \mathrm{a}>\mathrm{b}\},\{\mathrm{a}, \mathrm{a}>\mathrm{b}\}$, or even $\{\boldsymbol{a}, \boldsymbol{a}>\boldsymbol{b}\}{ }^{5455}$

[^24]－Even with \MTnonlettersobeymathxx，the parentheses－like symbols（，），［，］，＜and＞and the slashes $/, \backslash$ ，if used as left／right delimiters（i．e．with \left／\right）will not respond to math alphabet commands．This is mainly explained by the fact that the text font will not contain suitable glyphs，hence no attempt was made by mathastext to make the delimiters pick up their glyphs there．
But mathastext does try to pick up most of the＇small variants＇of the delimiters from the text font：$\$ \backslash$ left $<\mathrm{x} \backslash$ right $>\$$ gives $\langle x\rangle$ but $\$ \backslash$ left $<\mathrm{b} \backslash$ right $>\$$ gives $\langle b\rangle$ ．Notice that this differs from standard $\mathrm{I}_{\mathrm{A}} \mathrm{I}_{\mathrm{E}} \mathrm{X}$ for which $\$ \backslash$ left $<\mathrm{x} \backslash$ right $>\$$ gives $\langle x\rangle$ ．As it is perhaps a bit strange to have $\langle x\rangle$ and $\langle y\rangle$ not use the same bracketing glyphs，there is an option nosmalldelims：with this option the small－sized variants of the delimiters are not modified by mathastext（option nosmalldelims has the side effect that，for the non－delimiter uses of $\backslash\{, \backslash\}$ to be mathastext－ified it is necessary to issue $\backslash M T n o n l e t t e r s o b e y m a t h x x ~ a n d ~$ \MTexplicitbracesobeymathxx．）
－At any rate，as said above，whether＇small＇or not，delimiters will remain unresponsive to math alphabet commands，due to technical aspects of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ ，and the way mathastext handles these things．Examples：
－\mathbf $\{<\mathrm{a}, \mathrm{b}>\}$ gives $<\mathbf{a}, \mathbf{b}>$ ：no use of \backslash left／\backslash right，hence brackets do obey the math alphabets－as we issued $\backslash M T n o n l e t t e r s o b e y m a t h x x ~ a ~ b i t ~ e a r l i e r, ~$
－\mathbf\｛\left＜a，b\right＞\} gives $\langle\mathbf{a}, \mathbf{b}\rangle$ ：delimiters used with \left } / \backslash right will not obey the math alphabets，
－\mathbf $\{\backslash$ mathopen $\{<\} \mathrm{a}, \mathrm{b}$ \mathclose\｛＞\}\} gives <a, $\mathbf{b}>$ ：no \backslash left／\backslash right，so the brackets do obey the math alphabets due to \MTnonlettersobeymathxx．
－to compare，the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ standard for \mathbf $\{\backslash$ mathopen $\{<\} a, b \backslash$ mathclose $\{>\}\}$ is to produce $\langle\mathbf{a}, \mathbf{b}\rangle$ ：neither brackets nor the comma are responding to \backslash mathbf．

1．8．5 Hacking letters（and even digits）for special tasks

For some ascii characters，i．e．the＂hard＂non－letters considered in the previous section，and even more spectacularly for all ascii letters，mathastext achieves the capabilities describes in earlier sections via a $\mathrm{T}_{\mathrm{E}} \mathrm{Xnique}$ known as＂mathematically active characters＂．For letters this is turned on by default，but for the non－letter characters it is the command $\backslash M T n o n l e t t e r s o b e y m a t h x x ~ w h i c h ~ t r i g g e r s ~ t h i s ~ m a t h-~$ ematical activation．
It is possible for daring $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ users to hook into this architecture．Release 1.4 has made this especially easy regarding ascii letters（and even for digits if using the package option activedigits）．

Except if told otherwise，mathastext will make all Latin ascii letters mathemat－ ically active，and when $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ encounters e．g．＇e＇in math mode it replaces it with the macro having name \MTcommandlettere（mind the ending e）．Its default definition inserts optional extra skips and／or an italic correction．

You can redefine this \MTcommandlettere，or any \MTcommandletter〈ascii－letter〉， to achieve（globally or locally）custom goals．${ }^{56}$ Attention，this redefinition should not use＇e＇itself as a＂naked＂character to typeset in math mode，else an infinite loop will arise at time of use．To access a symbol equivalent to the＂naked＂＇e＇，use

[^25]\MTmathcharlettere（again mind the ending e）．For example：
}\} \%\) not \mathsf $\{e\}$ ！
In this case we could do the simpler approach with \textsf，which works as it will then typeset the e in text mode，not math mode．
}\}\% not \mathsf\{e\}!
This gives a priori the same result in our mathastext context，which picks the font for \mathsf from the one used by \textsf，assuming here default configuration in the preamble following the loading of mathastext．${ }^{57}$
It is recommended in general to add an extra pair of braces to avoid problems when used with＿and ${ }^{\wedge}$ ．Let＇s give an other example and demonstrate its output：

```
\[
\renewcommand\MTcommandlettere{{\mathcolor{blue}{\mathsf{\MTmathcharlettere}}}}%
abcde^efgh
\]
```

$$
a b c d \mathrm{e}^{\mathrm{e}} f g h
$$

As this document is in subdued mode，we had，to show the effect，to switch tem－ porarily to some math version activating mathastext，and we used here a times math version with Times and Helvetica clones．
 math skips added before or after via \MTsetmathskips will be lost，as well as the automatic italic correction $\backslash /$ added by mathastext for an upright font，and it is up to the redefinition of $\backslash M T$ commandlettere to do the job．
The explanations above apply to any（ascii）Latin letters 〈ascii－letter〉with associed macros \MTcommandletter〈ascii－letter〉 and＂naked＂symbol command \backslash MTmathcharletter〈ascii－letter〉．
With option activedigits you can even extend the game to digits．The＂raw＂ digit symbol is kept as a math symbol control sequence \MTmathchardigit $\langle y\rangle$ where $\langle y\rangle$ stands for the Roman version of the digit：empty for 0 ，then i，ii，etc．．．until ix．The macro to redefine for special effect is $\backslash M T c o m m a n d d i g i t\langle y\rangle$ ．Example：
\［
}
＿\｛\mathcolor\｛red\}\{2\}\}\}\}\%
\backslash renewcommand $\backslash M T$ commanddigiti\｛\｛\boxed\｛\mathbf $\{\backslash M T$ mathchardigiti\}\}\}\}
0＾0＿0
\］
${ }^{57}$ This example simply reassigns e to another font，and one could use also the LATEX command \De－ clareMathSymbol for this．But few IATEX users are familiar with its interface，and such an ap－ proach could cost adding an extra math symbol font，depending on what one wants to do．Besides \DeclareMathSymbol is a preamble－only command，which limits considerably its usability，forcing basically the change to apply to the whole document．Using the mathastext interface via mathe－ matically active characters opens up the possibility of arbitrary replacements，of local scope in the document body．

$$
0_{\frac{\mathbf{1}}{2}}^{{ }_{0}^{0}} \stackrel{\boxed{1}}{0}
$$

（\boxed is from amsmath）Let＇s hope you find better usage．．．recall that you can＇t use digit 0 in its redefinition but must use \MTcommanddigit．But you can of course use other digits．．．except if their definitions use the digit 0 rather than the non－active symbol control sequence \MTmathchardigit．

See also \MTmathactiveletters and \MTmathactivedigits．

2 Package commands

2．1 Commands for regular usage

2．1．1 Preamble－only commands

These commands mainly facilitate the definition of math versions，in a mathastext extended sense．It is not necessary to use them to activate the package basic functionalities，as loading mathastext is enough（except with the subdued option）．
－alizesmathastext：itsetsthefontsusedinmathmode（inversionsnormalandbold）forletters，digitsandafewasciisymbolstothecurrentdefaultsofencoding，family，seriesandshape．58Boththenormalandboldmathversionaremodifiedbythisactionof\backslashMathastext．－\Mathastext［〈version＿name\rangle］ratherthanredefiningthefontsformathmode，\Mathastextdeclaresanewmathversion，anditisthismathversionwhichwillusethethencurrenttextfontinmathmode．59－\Mathastext［〈version＿name〉］［〈parent＿name〉］declares〈version＿name〉andconfiguresittoinheritfrom〈parent＿name〉allwhichisnotunderthescopeofmathastext，suchaslargesymbols．Themainusewillbewith［bold］inor－derforthesymbolsandlargesymbolstobetypesetasintheboldmathversion．Forexample，thisdocumenthasinitspreamble：\usepackage\｛newcent\}\%thispackagemakesNewCenturytheromanfont\backslashMathastext［newcent］\％thismathversionwilluseNewCentury\MTseries\｛b\}\%next\Mathastextwilluseaboldfont\Mathastext［boldnewcent］［bold］\％largesymbols，etc，willbeboldtooWecancheckthatitdoeswork：\MTversion\｛newcent\}:abcde$\oint\bigvee\biguplus\bigotimes\bigoplus$undefined

[^26]
\MTversion\｛boldnewcent\} : abcde $\oint \bigvee \biguplus \bigotimes \bigoplus$

Naturally，for this one needs an initial math font setup with some nice bold fonts also for large symbols．This is the case with the excellent txfonts pack－ age of Young Ryu．As the present document must use many fonts and declares many math alphabets，we did not load the full package and fonts but only the largesymbols：
\DeclareSymbolFont\｛largesymbols\}\{0MX\}\{txex\}\{m\}\{n\}
\SetSymbolFont\｛largesymbols\}\{bold\}\{0MX\}\{txex\}\{bx\}\{n\}
\DeclareFontSubstitution\｛0MX\}\{txex\}\{m\}\{n\}
－\MTencoding\｛〈enc $\rangle\}, \backslash M T f a m i l y\{\langle f a m\rangle\}, \backslash M T s e r i e s\{\langle s e r\rangle\}, \backslash M T s h a p e\{\langle s h\rangle\}$, and $\backslash M T l e t t e r s h a p e\{\langle s h\rangle\} .{ }^{60}$ For example valid respective arguments are，re－ spectively，$\langle T 1\rangle,\langle p h v\rangle,\langle m\rangle,\langle n\rangle$ ，and $\langle i t\rangle$ ：this is the Helvetica font in T1－encoding， regular（medium）series，upright shape，and the letters will be in italic shape． Once used their effect applies to all succeeding calls to \Mathastext，and can only be undone by using them again with other settings，again followed by a call to \Mathastext．

NOTE：only if \Mathastext is used next（possibly with a version name as op－ tional argument）will these commands have any real effect．
－\MTWillUse $[\langle l t s h\rangle]\{\langle e n c\rangle\}\{\langle f a m\rangle\}\{\langle s e r\rangle\}\{\langle s h\rangle\}$ tells mathastext to use the font with the specified encoding，family，series，and shape for the letters and digits （and all other afflicted characters）in math mode．The optional argument 〈ltsh〉 specifies a shape for the letters，for example \itdefault，or directly $\langle i t\rangle$ or $\langle s c\rangle$ ．
－\MTDeclareVersion［〈ltsh $\rangle]\{\langle n a m e\rangle\}\{\langle e n c\rangle\}\{\langle f a m\rangle\}\{\langle s e r\rangle\}\{\langle s h\rangle\}[\langle$ other＿version $\rangle]$ ： declares that the document will have access to the font with the specified char－ acteristics，under the math version name $\langle n a m e\rangle$ ．For example：
\MTDeclareVersion［sc］\｛palatino\} \{T1\}\{ppl\}\{b\}\{sl\}
declares under the name palatino a version where mathematics will be typeset using the Palatino font in T1－encoding，bold，slanted，and the letters will in fact be in caps and small caps（and bold）．${ }^{61}$ When the initial optional argument is absent，and mathastext was loaded with the italic option，then the default letter shape will be it,${ }^{62}$ else letters will have the same shape as used for digits and operator－names．
Another optional argument may be used as last argument．Similarly as its use with \backslash Mathastext this makes the declared math version inherit，for things not modified by mathastext like large symbols，the font set up of the math version whose name was passed as optional argument（typical use will be with［bold］）．

[^27]－\MTboldvariant $\{\langle v a r\rangle\}$ ：when used before \backslash Mathastext，specifies which bold（b， $\mathrm{sb}, \mathrm{bx}, \ldots$ ）to be used by \mathbf（and \boldmath）．Default is the $\backslash \mathrm{bfdefault}$ at the time of loading mathastext．When used before the declaration of a version， decides the way $\backslash m a t h b f$ will act in this version．

- \MTEulerScale\｛〈factor $\rangle\}$ ：scales the Euler font by \langle factor \rangle ．
- \MTSymbolScale\｛〈factor \rangle \}: scales the Symbol font by \langle factor \rangle ．
－\MTitgreek，\MTupgreek，\MTitGreek，\MTupGreek：these commands are active in case the LGRgreek option was used；they act as the options of the similar names itgreek，upgreek，itGreek，upGreek，but only for the Greek letters in the versions yet to be defined．Their effect become recorded only when the version is declared via \Mathastext or \MTDeclareVersion．
－\MTgreekfont\｛〈fontfamily \rangle \}: a command with a mandatory argument which specifies the font family for Greek letters in all mathastext math versions de－ clared afterwards via \Mathastext or \MTDeclareVersion．Only effective if LGRgreek（or LGRgreek＋）or selfGreek option was passed to the package．
Check the LGRgreek documentation for some relevant information．

2．1．2 Commands for body or math

－\MTversion［〈nametext $\rangle]\{\langle$ namemath $\rangle\}, \backslash$ MTversion＊\｛〈namemath $\rangle\}$ ，also known as \Mathastextversion（and as \MTVersion，and \mathastextversion）：
－the non－starred version changes both the document text fonts and the math fonts（for those characters treated by mathastext）：the mandatory argu－ ment is the math version to be used for math；the optional argument is the name of（another）mathastext－declared math version，the font which was chosen during its declaration will be set as document text font（and \familydefault etc．．．also are redefined）．In the absence of the optional argument，the mandatory one is used．The versions must be either normal， or bold，or previously declared ones via \Mathastext or \MTDeclareVer－ sion．
－the starred variant does the math set－up，but changes nothing to the text fonts（see subsection 1.6 for a description of the math set－up，which sum－ marizes what is done additionally to only using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$＇s \mathversion）．
$\backslash M T v e r s i o n[\langle$ nametext $\rangle]\{\langle$ namemath $\rangle\}$ does $\backslash M T e v e r y m a t h d e f a u l t$（except for $\backslash M T v e r s i o n\{n o r m a l\}$ and $\backslash M T v e r s i o n\{b o l d\}$ under package option subdued）， which in particular activates the insertion of skips around letters specified by \backslash MTsetmathskips and also，if the font used is not oblique the insertion of italic corrections（for better positioning of subscripts；see the discussion in subsub－ section 1．8．2）．Under the frenchmath option the package checks separately the letter shape for lowercase and uppercase．
\backslash MTversion also does \MTexistsdoesskip, \MTforalldoesskip, and also \MTprimedoesskip, \MTmathoperatorsobeymathxx, except under the subdued option for normal and bold, in which case it does the opposite actions.

- \hbar: this macro is by default redefined (in a way compatible with the italic option) combining the h letter and the ${ }^{-}$accent from the mathastext font. Note that \backslash mathrm\{ \backslash hbar\} and \backslash mathbf $\{\backslash$ hbar $\}$ will work and that \backslash hbar does scale in subscripts and exponents. Since $1.3 u$, this is a priori compatible with all 8bits text font encodings supporting the $\backslash=$ text accent in the LaTeX way. ${ }^{63} 64$
- \fouriervec: this is a \vec accent taken from the Fourier font; the fourier package need not be loaded. Active only if option fouriervec.
- \pmvec: this provides a poor man \vec accent command, for upright letters. It uses the right arrow. Does not change size in subscripts and exponents.
- \Mathnormal, \Mathrm, \Mathbf, \Mathit, \Mathsf, \Mathtt: they use the mathastext-ified fonts. By default, \mathnormal, \mathrm, \mathbf, \mathit, \mathsf, \mathtt are redefined to map to these new commands using the mathastext fonts. The option defaultalphabets tells to keep them with their original meanings. Alternatively the original commands can be saved under other names before loading mathastext: the underlying architecture is not deleted by the package, and aliases defined before loading mathastext will work as expected.
- \mathnormalbold: a bold version of \mathnormal, i.e. picks up the math alphabet used for ascii letters as mathematical variables, but in a bold weight. When the package typesets such letters in the same shape as for operator names (i.e. neither italic option nor the \MTlettershape command have been used) the output is as the one of \mathbf.
This command is also made available under subdued option in the "normal" and "bold" math versions, as $\mathrm{AATEX}_{\mathrm{E}}$ does not define it a priori, contrarily to \mathbf and other math alphabet commands.
- \mathgreekup: math alphabet, only available under LGRgreek (or LGRgreeks) option, which gives access to 'upright' Greek letters (picked up from a font available in LGR-encoding). Note that the package also defines \alphaup, ..., \piup, ... mathematical character tokens, see subsubsection 1.7.3. What "up" shape really means may be math version dependent. It is configurable in the preamble via re-defining \MTgreekupdefault and then declaring the math version via \Mathastext (with optional argument if for a math version other than the "normal" one), or \backslash MTDeclareVersion. The font used is also math version dependent: it is the one which was similarly configured via usage of \MTgreekfont prior to the \Mathastext or \MTDeclareVersion step. In absence of any such configuration

[^28]in the preamble, it will be (in all math versions) the family default at time of loading the package (which thus has then to be available in LGR encoding; it is not a problem if the family default has no LGR support as long as suitable usage of \MTgreekfont later on configures a suitable font).

Also \mathgreekupbold.

These math alphabets are also available under subdued option in the "normal" and "bold" math versions, as $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ does not (a priori) define analog ones, so mathastext has no reason not to leave them live. Note though that \mathgreekup\{\pi\} will work only if the original \backslash pi is of "variable family type" which is not the case except if some math package handling Greek was used, but then why load mathastext with option LGRgreek?
But you can use \mathgreekup\{p\} as the slot number of p in the ${ }^{A} T_{E} X$ font for mathematical letters is the same as the slot number of π in LGR encoding.
Or, use rather \piup because it is not undefined by mathastext in subdued normal mode, as ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ has no a priori definition for it. Or use (but why?) \mathgreekup\{\piit\}.
The LGR font family used will be the latest one configured by \MTgreekfont usage followed by \backslash Mathastext (without optional argument) in the preamble which is what is needed to modify the non-subdued aspects of subdued "normal" math; if no such configuration was done, the font family will be the family default found at time of loading the package.
Worse: Δ is per $\operatorname{LAT}_{\mathrm{E}} \mathrm{X}$ default of variable family type but its slot number in its assigned font is not at all the one of the LGR encoding, so \mathgreekupbold\{\Delta\} will give some unrelated glyph. This is because mathastext restores the pristine \Delta in subdued normal mode to its original meaning. But it keeps its own defined \Deltaup and \Deltait, so you can use \mathgreekupbold\{\Deltaup\} for example. Or \mathgreekupbold\{D\} as the mathematical letter D slot number in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ is also the one of Δ in LGR encoding.
I am sorry for such lengthy explanations, but this is to comment on why mathastext keeps also in subdued normal math some of its Greek related functionality, if option LGRgreek was used. Most mathastext users will not use the subdued option anyhow.

- \mathgreekit: math alphabet, only available under LGRgreek (or LGRgreeks) option, which gives access to 'italic' Greek letters (picked up from a font available in LGR-encoding). The actual shape is configurable via re-defining \MTgreekitdefault and then redeclaring the math version via \Mathastext (with optional argument if for a math version other than the "normal" one), or \MTDeclareVersion.

Also \mathgreekitbold.

See the discussion of \mathgreekup for some $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ hacker level information on what happens with subdued option in the "normal" (or "bold") math version.

- \inodot, \jnodot: the corresponding glyphs in the mathastext-ified font for use in math mode. By default, \imath and \jmath are redefined to use them. Since $1.3 t$, these macros obey the subdued regime.
- \MathEuler, \MathEulerBold: math alphabets to access all the glyphs of the Euler font, if option eulergreek (or eulerdigits was passed to the package.
- \MathPSymbol: math alphabet to access the Symbol font.
- when one of the options symbolgreek, eulergreek, or selfGreek is passed to the package the capital Greek letters which look like their Latin counterparts acquire names: \Digamma, \Alpha, \Beta, \Epsilon, \Zeta, \Eta, \Iota, \Kappa, \Mu, $\backslash \mathrm{Nu}, ~ \ O m i c r o n, \backslash \mathrm{Rho}, \backslash \mathrm{Tau}, \backslash \mathrm{Chi}$ (no \Digamma for Symbol). Also an \omicron control sequence is provided.
- LGR Greek and 'var'-letters: only the \varsigma is available in this encoding, so using for example \varphi will load the previous default math font. It might thus be suitable when recompiling already written $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ sources to add to the preamble \let\varphi=\phi, \let\varepsilon=\epsilon, etc..., in case only the 'variant' form of the letter was used in the documents.
- Miscellaneous mathematical symbols from the postscript Symbol font are made available (or replaced) by option symbolmisc. ${ }^{65}$ They are \backslash prod Π \sum \sum \implies \Rightarrow \impliedby \Leftarrow \iff \Longleftrightarrow \shortiff \Leftrightarrow \to \rightarrow \longto \longrightarrow \backslash mapsto \mapsto \longmapsto \longmapsto \aleph \aleph \inftypsy ∞ \emptyset \varnothing \surd $\sqrt{ }$ \backslash nabla ∇ \angle $\angle \backslash$ forall \forall \exists $\exists \backslash$ neg $\neg \backslash c l u b s u i t ~ \& ~ \backslash d i a m o n d s u i t ~ * ~$ \backslash heartsuit \vee \spadesuit $\uparrow \backslash$ \smallint \int \wedge \wedge \vee $\vee \backslash c a p ~ \cap ~ \ c u p ~ \cup ~$ \backslash bullet •\div \div \otimes \otimes \oplus $\oplus \backslash$ pm \pm \ast $* \backslash$ times $\times \backslash$ proptopsy \propto \backslash mid $\mid \backslash$ leq $\leq \backslash$ geq \geq lapprox $\approx \backslash$ supset $\supset \backslash$ subset $\subset \backslash$ supseteq $\supseteq \backslash$ subseteq \subseteq \in $\in \backslash$ sim $\sim \backslash$ cong $\cong \backslash$ perp \perp \equiv $\equiv \backslash$ notin $\notin \backslash$ langle 〈 \rangle \rangle. And a \DotTriangle \therefore is made available by option symbolre (which overwrites $\backslash \operatorname{Re}$ and $\backslash \operatorname{Im}: \mathfrak{R}, \mathfrak{I}$). The \inftypsy and \backslash proptopsy have these names to leave up to the user the choice to replace (or no) the original (larger) \infty ∞ and \propto \propto.

Regarding the \prod and \sum commands: they will use the Symbol glyphs $\Pi \Sigma$ in inline math, and in display math the Computer Modern ones (or whatever is set up by other packages; here we have the symbols from txfonts):

ПГ

The package provides \prodpsy and \sumpsy: if one really wants in all situations the Symbol glyphs, one can do \let $\backslash p r o d \backslash p r o d p s y ~ a n d ~ \ l e t \backslash s u m \ s u m p s y . ~$ Also \MToriginalprod and \MToriginalsum will refer to the \prod and \sum before redefinition by the package: this is to allow constructs such as \$\displaystyle\MToriginalprod\$ or $$
\textstyle\MToriginalprod
$$, because they would not work with the \prod and \sum as re-defined by the package.

2.2 Commands for expert usage

A few preliminary comments, mainly destined to advanced users aware of some $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ innards (more extensive explanations are to be found in the code comments).

[^29]The timing for actions of mathastext falls into three cases:

1. things done by mathastext itself during its loading (some are delayed to \begin\{document\}), }
2. things done as the result of user commands, either in the preamble or in the body of the document, (but note that some commands if used in preamble have a real effect only at the time of \backslash begin\{document\}),
3. things done everytime math mode is entered.

At 1.4 a very significant change took place: the last category, the one of things done everytime math mode is entered, has become empty. ${ }^{66}$

The everymath option added at 1.4 re-establishes the legacy behavior. Except for ascii letters: they will not even then be made mathematically active at each entrance in to math mode, but only once at time of package loading (if not subdued) and also when using $\backslash M T v e r s i o n ~(f o r ~ n o n-s u b d u e d ~ m a t h ~ v e r s i o n s) . ~ . ~$

Under everymath option some commands described here as being usable everywhere have in fact an effect only if used externally of math mode. The documentation is only accurate for the default 1.4 configuration, not for the legacy one as re-enacted by everymath.

2.2.1 Expert commands which are preamble-only

- $\backslash M T g r e e k u p d e f a u l t: ~ a ~ c o m m a n d ~ w i t h ~ n o ~ a r g u m e n t ~ w h o s e ~ e x p a n s i o n ~ s p e c i f i e s, ~$ under LGRgreek regime, the shape for the 'up' Greek control sequences (and for the no-postfix Greek control sequences under upgreek option) in all mathastext math versions declared afterwards via \Mathastext or \MTDeclareVersion. The a priori default for this shape is ' n ' (without the quotes). See subsubsection 1.7.3. This command can also be defined prior to loading the package, as the package itself only does:

```
\providecommand*\MTgreekupdefault{n}
```

- \backslash MTgreekitdefault: a command with no argument whose expansion specifies, under LGRgreek regime, the shape for the 'it' Greek control sequences (and for the no-postfix Greek control sequences under itgreek option) in all mathastext math versions declared afterwards via \Mathastext or \MTDeclareVersion. The a priori default for this shape is 'it' (without the quotes). See subsubsection 1.7.3. This command can also be defined prior to loading the package, as the package itself only does:
\providecommand*\MTgreekitdefault\{it\}

[^30]
2.2.2 Expert commands usable everywhere

- \MTcustomgreek: in case mathastext has been loaded with one of its Greek related options, this activates the corresponding customization of Greek letters in math mode. It is issued automatically by the package in the preamble (except if loaded with subdued option) and at each switch of math version via \MTversion or \MTversion* (except for the normal and bold math versions in subdued mode). Also available as \Mathastextcustomgreek. May be used even inside of math mode.
- \MTstandardgreek: in case mathastext was loaded with one of the Greek related options this command reverts the customization, it resets the Greek letters to their definitions in force at package loading time. Can be used in the preamble, but is mainly for the document body (may even be used inside math mode ...). Done automatically under the subdued option when switching to the normal or bold math version. Also available as \Mathastextstandardgreek.
- \MTsetmathskips $\{\langle a-z / A-Z\rangle\}\{\langle$ muglue_before $\rangle\}\{\langle$ muglue_after $\rangle\}$: is used to specify extra skips (or rather mu glue) to be inserted in math mode, before and after a letter. The rationale is that standard text fonts used in math mode may sometimes cause glyph (near-) collisions with math symbols, as $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has some implicit expectations on the design of fonts for math letters.

These extra skips around letters are set at their natural width and do not add any stretchability or shrinkability to the math formula as a whole, nor do they result in extra potential break points.

Random (silly) examples:
\MTsetmathskips\{x\}\{\medmuskip\}\{\thickmuskip\}
\MTsetmathskips\{A\}\{.5mu\}\{2.3mu\}
and the effect: $v w x y z A B C^{v w} x y z A B C$. The effect obeys the usual $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ scoping rules.

The first argument of \MTsetmathskips may be any expandable code giving a letter; this facilitates use of \MTsetmathskip in \@for loops such as this one:
\makeatletter
\@for\@tempa:=a, b, c, d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\do\{\%
\MTsetmathskips\{\@tempa\}\{2mu\}\{2mu\}\}\%
\makeatother
Starting with v1.3i: the extra skips are not applied to the letters within the scope of math alphabet commands, or the letters from operator names (predefined or user declared).

[^31]
Abstract

the definition of the math version（as defined via \Mathastext with its optional argument or via $\backslash M T D e c l a r e V e r s i o n)$ ．The declared skips hold thoughout the document until modified or canceled，independently of math versions（of course，mathastext cancels the skips in the normal and bold math versions if package option subdued was used）．

－\MTunsetmathskips $\{\langle a-z \mid A-Z\rangle\}$ ：cancels the skips for that letter（they are not set to Omu but completely removed）．
The argument may be a macro（or any expandable code）expanding to a letter．
－\MTnormalexists，\MTexistsdoesskip：the latter（done by default if not
 it so that \exists takes into account the math glue as specified by \MTexistsskip．The former is its opposite．
－\MTexistsskip\｛〈math glue〉\}: specifies the amount of skip or more generally glue to put after each \exists math symbol．Indeed，upright letters（or digits for that matter）often appear to be positioned a bit too close to the quantifier： $\exists \mathrm{B}$ ．The package default is to add a 1mu skip（this default is set to zero in the case of italic）：$\exists \mathrm{B}$ ．One can change the default with the following syn－ tax：\MTexistsskip\｛2mu plus 1mu minus 1mu\}, which if used in the preamble and followed with a \Mathastext command（or \MTDeclareVersion），will be recorded in the definition of this math version（and subsequent ones）．One may also use the command at any time in the document．In the case of the option subdued，the skip is canceled in the normal and bold math versions．In the case of the option italic，the default skip is set to zero．
－\MTnormalforall，\MTforalldoesskip：the latter（done by default if not
 makes it so that \forall takes into account the math glue as specified by $\backslash M T f o r a l l-$ skip．The former is its opposite．
－\MTforallskip\｛〈math glue〉\}: the default is to add a . 6667 mu math skip after each \forall（except with the option italic for which the default skip is set to zero）． Compare $\forall \mathrm{F}$（has the skip）with $\forall \mathrm{F}$（has no skip）．Use this command in the preamble to set up the skip or glue to be used in the next to be declared math versions．In the case of the option subdued，the skip is canceled in the normal and bold math versions．In the case of the option italic，the default skip is zero for all math versions．One may use the command at any location in the document．
－\MTnormalprime，$\backslash M T p r i m e d o e s s k i p: ~ t h e ~ l a t t e r ~(d o n e ~ b y ~ d e f a u l t ~ i f ~ n o t ~ s u b d u e d, ~$ and also on each use of \MTversion in the body of the document except for the subdued normal and bold math version）makes it so that＇takes into account the math glue as specified by $\backslash M T$ primeskip．The former is its opposite．In all cases the right quote＇is a mathematically active character throughout the document
producing ' as is the default in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, it is only its meaning which changes to include or not an extra skip.
Even though \MTprimedoesskip is not done in the subdued case, it is not a no-op even then in the preamble or in the normal and bold math versions.

- \MTprimeskip\{〈math glue〉\}: specifies the amount of math skip to add before the derivative glyph. The default iniitial value is 0.5 mu , except with the italic option where it is 0 mu . In the case of the option subdued, the skip is canceled in the normal and bold math versions.
- \MTnormalasterisk, \MTactiveasterisk: the latter will use for $*$ and \ast the text font asterisk, suitably lowered; the former if used in the preamble tells mathastext to not modify the non-mathastext situation, or if used in the body to revert to it. Both are no-op's in absence of option asterisk.
A legacy feature is that \MTactiveasterisk is not a no-op in subdued normal or bold math versions, and does let the asterisk obey the \MTlowerast configuration, if used explicitly by user (even in the preamble).
changed: At 1.4 mathastext checks at \begin\{document\} (or each time \MTaciveasterisk is made use } of) if * is a Babel shorthand (which I far as I know is the case of no language) or is already mathematically active. In the latter case the ${ }^{*}$ is not modified in math mode; and it is not modified either if found to be catcode active but not a babel shorthand. In contrast, the \ast will always be set to obey \MTlowerast configuration after \MTactiveasterisk.
- \MTlowerast $\{\langle$ dimen $\rangle\}$: under option asterisk a \raisebox command is used to lower the text asterisk to produce a reasonable math asterisk. The package uses this command initially with argument $0.3 \backslash$ height, this will have to be finetuned for each given text font but worked out ok with the fonts we tried. The dimension argument will be used also in sub-scripts and sub-sub-scripts, so it is best not to use an absolute dimension. The dimension specification is for text it can not be with mu unit.
- \MTmathoperatorsobeymathxx, \MTmathoperatorsdonotobeymathxx: the former is done by default, it makes operator names obey math alphabets. See also subsubsection 1.8.4. This functionality does not rely on "math active characters". Automatically issued by each \MTversion, except under option subdued when switching to normal or bold.
- \MTmathactiveletters: 'math activation' of all ascii Latin letters. This is done (1.3) by the package automatically except under the subdued option.
changed: At 1.4 its behavior was modified significantly: instead of setting some toggle obeyed only at entrance of math mode, it acts on the spot immediately.

Formerly, this command was only a configuration toggle with no immediate impact (and was not usable from inside math mode). Indeed, the mathastext work
of mathematical activation was done (or not done) each time math mode was entered (if not in subdued), and the ascii letters kept standard mathcodes outside of math mode.
The command now does the mathematical activation on the spot and the meaning of the active shape of the ascii letters - a priori undefined because typesetting a document with an active ascii letter is near impossible, as no $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ command name used in the document can contain it - is modified here and then; but of course the catcodes are not modified only the mathcodes are. Except if mathastext is loaded with the subdued option, this mathematical activation is executed already at package loading time.
If with the subdued option, the command is inactive in the preamble, as well as in the normal and bold math versions. In all cases it gets (re-)executed automatically when \MTversion is used for activating a non-subdued math version.
The new situation may be dangerous if the document author makes a letter, say A, catcode active at some point, with a definition of the active state using \string A. As mathastext has (earlier, in the preamble) set A to be mathematically active as well, and as the \string changes nothing to that, an infinite loop will be triggered by such an A in math mode.
But, having an active ascii letter can only be in very localized portions of a document, and only be authored by experts. The experts should carefully make sure the mathcode of the letter is not active if they set the catcode to active and let the active meaning use \string on the letter itself, thus we can trust that the mathematical activation done earlier by mathastext is undone and there will be no problems.
This 1.4 change may thus need to be followed by some adjustments in some quite special circumstances caused by some expert interventions.
See subsubsection 1.8.1 and subsubsection 1.8.2 for the rationale of this mathematical activation, and subsubsection 1.8.5 for ways to use it for other goals.

If you do want mathematically active letters also in subdued normal or bold math versions (to apply tricks such as those of subsubsection 1.8.5) there is \mst@mathactivateletters which does not check the subdued status.

- \MTmathstandardletters: turns off the mathematical active ascii letters, i.e. reverts their mathcodes to package font configuration. Here "standard" only means that the letters will not be mathematically active, but they are still under the influence of mathastext regarding the typeface they use, so they are only "standard" from mathastext point of view.
changed: At 1.4 its behavior was modified: instead of setting some toggle obeyed only at entrance of math mode, it acts on the spot immediately.
\backslash MTmathstandardletters will not try to restore the meaning associated to the catcode active variant of the letter token which may have been in place at the time of \MTmathactiveletters. This meaning is not saved for later reset.

Except if the letter was an active Babel-shorthand at the time of \MTmathactiveletters, which is in fact almost impossible to achieve via the babel interface.

And if the letter was catcode-active due to user action, \MTmathactiveletters will not have made it mathematically active, nor will it have modified its active meaning. So the active meaning may get overwritten only for a letter having a normal catcode at time of \backslash MTmathactiveletters but which for some reason has some meaning associated to its catcode active variant.

- \MTmathactivedigits: is a no-op except under option activedigits. It then makes all digits mathematically active and is executed during package loading, except if subdued. It is again executed when entering any non-subdued math version in the document body. See subsubsection 1.8.5 for an example of use.
If you do want mathematically active digits also in subdued normal or bold math versions (to apply tricks such as those of subsubsection 1.8.5) there is \mst@mathactivatedigits which does not check the subdued status.
- \MTmathstandarddigits: a no-op except under option activedigits. Under this option it resets the digits to their normal mathcodes as configured by the package.
- \MTicinmath: this command is executed by default by mathastext except in case of option subdued or if the user chosen letter shape is oblique (it or sl). It tells mathastext to add italic corrections after all letters in math mode, except within the scope of math alphabets.

This command and the next ones in this item can be used anywhere in the document and even from inside math mode. In case of subdued option, using the command from within the preamble remains without effect, as the document body will start in the subdued normal math version anyhow. Each $\backslash M T v e r s i o n$
 the subdued option was used and the chosen math version is normal or bold.
The effect of this and the other commands of this item is local to the group or environment in which it has been issued.

The description above about the command not being executed if the letter shape is italic or slanted is not quite right, as it refers only to the act of inserting or not italic correction. The \backslash MTmathactiveletters component is always executed, however it will be a no-op in subdued normal and bold.
\MTnoicinmath: this command deactivates the package added italic corrections. It can be used inside as well as outside of math mode (or in the preamble of the document). Note that it does not deactivate the mathematical activation of the ascii letters. Use \MTmathstandardletters for that.
\backslash MTICinmath, \MTnoICinmath: only acts on the uppercase letters. But recall that \backslash MTicinmath is done by default, thus using italic corrections only for uppercase needs to go via \MTnoicinmath then \MTICinmath.
$\backslash M T i c a l$ soinmathxx：this command de－activates the de－activation of the italic corrections inside the arguments to the math alphabet commands．It can be issued inside as well as outside of math mode．Will be effective only if \MTicinmath or \MTICinmath is in force．To cancel its effect either enclose it in a group or environment or re－issue \MTicinmath after it．
－\MTeasynonlettersobeymathxx，\MTeasynonlettersdonotobeymathxx：the for－ mer is done by default，it makes characters ．，／，I，\，\＃，\＄，\％，and \＆（if not excluded by package options）obey math alphabet commands．See also subsub－ section 1．8．4．This functionality does not make the characters＂math active＂（but it does modify \mathcode＇s，naturally）．
－\MTnonlettersobeymathxx，\MTnonlettersdonotobeymathxx：the former will make（except if excluded by relevant package options）！，？，，，：，；，＋，－，＝，（，）， ［，］，＜，and＞obey the math alphabet commands（when not used as delimiters）． These characters are made＂math active＂，and each one now expands to two tokens．This makes for example $\$ a^{-}!\$$ illegal input and it will have to be coded $\$ a `\{!\} \$$ ．Hence，by default，the package does \MTnonlettersdonotobeymathxx．
－\MTexplicitbracesobeymathxx：extends an earlier \MTnonlettersobeymathxx to also treat $\backslash\{$ and
.$But then\left }\backslash\{\text { ，\right } \backslash \} \text { must be coded }}$
 tobeymathxx．
－\MTeverymathdefault：this hook is executed by \MTversion\｛〈version＿name〉\} （but if under option subdued and switching to the normal or bold math version its default effect is overruled by an \MTeverymathoff executed after it）．Its default meaning is：

```
\MTactiveasterisk % this has no effect without option asterisk
\MTprimedoesskip % this makes prime glyph obey extra space
\MTeasynonlettersobeymathxx
\MTicinmath % this does \MTmathactiveletters, hence the extra
    % skips from \MTsetmathskips are obeyed.
\MTmathactivedigits % this is a no-op in absence of option activedigits
\MTfixfonts % only operant under LuaLaTeX.
```

Under subdued option，switching to the normal or bold version does \MTeverymathoff which includes \MTnonlettersdonotobeymathxx．
The default \MTeverymathdefault which is issued when going back to a non－normal or bold math version doesn＇t do \MTnonlettersobeymathxx：thus it is up to the user to correct this if desired．

Notice also that \MTversion\｛〈version＿name〉\}, except for normal or bold if subdued does \MTforalldoesskip and \MTexistsdoesskip，which are not included in \MTeverymathdefault ac－ tions as they are not related to \everymath and \everydisplay．
At 1．4，the name of this command diverges somewhat from its action as mathematical activation of ascii letters（or，optionally，of digits）will happen on the spot and not during \everymath or \everydisplay execution．

- \MTeverymathoff: does \MTnormalasterisk, \MTnormalprime, \MTnonlettersdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTmathstandardletters, \MTmathstandarddigits and \MTdonotfixfonts.
Automatically done by \MTversion\{normal\} (or \{bold\}) under option subdued (and also \MTnormalexists and \MTnormalforall are executed then).
The commands \url/\nolinkurl of package hyperref and \url from url.sty (which use math mode under the hood) are patched by mathastext to do \MTeverymathoff automatically: this is needed because mathastext modifies anew some mathcodes each time math mode is entered, hence may overwrite to some extent the specific preparations done by \{url, hyperref\}.sty.
However, in some cases it may be interesting to be able to apply hacks as described in subsubsection 1.8.5. You can use now \MTeverymathoff as a hook inside \url and \nolinkurl commands. Perhaps redefine it (locally) to do all of the above except \MTmathstandardletters and/or \MTmathstandarddigits, and use the subsubsection 1.8.5 instructions to achieve special effects for some letters or digits in the URLs rendered via \url and \nolinkurl.

2.2.3 Expert commands usable only outside of math mode

There is only one pair of commands here: \MTfixfonts and \MTdonotfixfonts. They are operant only under LuaLATEX. As $\backslash M T e v e r y m a t h d e f a u l t$ and $\backslash M T e v e r y$ mathoff use them, they arguably could have been listed here, but only for engine LuaIATEX.

- \MTfixfonts: this is operant only under LuaIATEX. It has the effect that each time math mode is entered macro \MTfixmathfonts will be executed. The latter forces so-called base mode for the used text font in math mode, in an effort to (only partially, see code comments) fix the fact that OpenType features such as Lining Figures were in some cases not being applied in math mode when one uses text fonts there (text fonts are declared by LuaTEX+luaotfload to use node or harf mode, which are non-functional in math.) It is invoked automatically by the package (except for normal and bold math versions under subdued option), and in normal situations, there is no reason to use it directly.
changed: The hack was updated at 1.4 in order to also handle fonts using Renderer=HarfBuzz.
- \MTdonotfixfonts: cancels the job of \MTfixfonts. Done automatically in subdued mode when in the normal or bold math version; in normal contexts, there is no reason to use this command. Only operant under Lualatex.

2.2.4 Expert commands usable only in math mode

- \MTfixmathfonts: this used to be an internal package macro but it is given a public name at $1.3 p$ because I discovered that $\$. . \backslash h b o x\{\backslash$ mathversion\{foo\} $\$. . \$\} . . \$$ causes an issue and one needs to invoke again \MTfixmathfonts after the \hbox, for some reason. To be used only under Lua $\mathrm{A}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and only for such rare cases where it may be needed.

3 Package options

3．1 Summary of main options

italic：tells mathastext to typeset the ascii letters in math using italic shape； indeed，its legacy historical default is to typeset them in roman（upright） shape．
frenchmath：lowercase ascii letters in italic shape，uppercase in upright shape． Also lets the Greek letters，if the latter are under mathastext influence，be upright，i．e．also the lowercase ones．
subdued：tells mathastext to not change the default fonts or the math alphabets for the normal and bold math versions．The mathastext－ification activates only after \MTversion\｛〈version＿name〉\} usage in the document body, where the $\left\langle v e r s i o n _n a m e\right\rangle$ was declared as an mathastext enriched math version in the preamble via \Mathastext［〈version＿name \rangle ］or akin package commands．

LGRgreek，eulergreek，symbolgreek：the Greek letters will be taken，respectively from the text font itself（which must be available in LGR encoding），or respec－ tively the Euler or Symbol font．
symbolmax：all characters other than letters and digits，are taken from the Symbol font．This option also makes a number of further glyphs available，such as some basic mathematical arrows，and the sum and product signs．For doc－ uments with very simple needs in mathematical symbols，mathastext with option symbolmax may give in the end a PDF file size quite smaller than the one one would get without the package．${ }^{67}$
defaultmathsizes：prevents mathastext from setting up，as it does per default， larger subscripts and superscripts in math mode，and from copying code from the moresize package ${ }^{68}$ in order to redefine \Huge and define a \backslash HUGE com－ mand．

3．2 Complete list of options

Some items are described succinctly as more developed descriptions were given earlier．They may sometimes simplify by omission and not consider all possible configurations，particularly those resulting from usage of the package commands in the preamble to configure math versions．

Note that this list in not in alphabetical order，the items are grouped roughly by themes．So，objectively，the best for the diligent reader is to read thoroughly all descriptions．

[^32]- basic: only mathastextify (ascii) letters and digits. Can be combined with either nodigits or noletters.
- subdued: acts in a subdued way, which means that the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ "normal" (default) and "bold" (triggered by \boldmath or \mathversion\{bold\}, undone by \unboldmath or on exit from a scope limiting context such as an environment) math versions are left (not quite: check subsubsection 1.3.4 for specifics) unchanged and the mathastext action is triggered only when switching via \MTversion $\{\langle$ version_name $\rangle\}$ (or its starred variant) in the document body to a version previously defined in the preamble via \Mathastext [〈version_name〉] (or alternative declarative interface such as $\backslash M T D e c l a r e V e r s i o n) . ~{ }^{69}$
- italic: let the Latin letters (both lowercase and uppercase) use the italic shape (itdefault) in math mode. If the package handles Greek letters, also lowercase (but not uppercase) Greek letters will use this a priori italic shape except if some other option such as upgreek was used. ${ }^{70}$
- frenchmath: configures the lowercase Latin letters to use italic shape (\itdefault), and uppercase Latin letters to be in same shape as for digits and operator names (i.e. a priori \shapedefault).
If the package handles Greek letters both lowercase (if under control of mathas text, i.e. not for selfGreek) and uppercase Greek letters will use the same shape as operator names, except if some other option such as itgreek was used. ${ }^{71}$

This configuration (i.e. that uppercase Latin letters will be in the same shape as the one for digits and operator names) is not undone in the subdued "normal" and "bold" math versions. It holds throughout the document.
As a bonus, note that doing
astext\}providesasimplemannertoobtaintheexpectedshapesofLatinlettersinFrenchmathematicaltypography,inanarbitrarymathfontconfigurationfromotherpackages,incasethosepackagesdonotprovideanoptiontoachievethis.But,evenifmathastextisusedviaLGRgreektoconfigureGreekletters,ontheotherhandthecontrolsequencesforGreeklettersareallreallyrestoredtotheirdefaults(orwhateverwasconfiguredbyotherpackagesloadedpriortomathastext)inthesubdued"normal"mathversion,whichlimitatestheusefulnessofthepreviousparagraph.Onthebrightside,the\alphaup,\alphait,...,controlsequenceswillhoweverbewiththeirmathastextmeaning,seeLGRgreekformoreinformation.undefined

It is not possible (except of course if one is ready to do some low-level $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ coding to re-execute where needed in the document body a few lines of the package internals with appropriate

[^33]modifications; I said $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, not $\mathrm{IAT}_{\mathrm{E} X}$, as the latter is very much decided to make impossible any kind of math configuration change at this level if not in the preamble) to achieve a "French math" style only in some math versions and not in others. The reason why is that to achieve distinct shapes for uppercase versus lowercase Latin letters, the uppercase letters are assigned internally to the font (which can change from math version to math version) used for operator names. One can still make them slanted using \MTshape, but this will also slant the digits, as they are picked from the same font. On the other hand if we do not use the frenchmath option, both uppercase and lowercase Latin letters are always assigned to the same font, so no math version can give them separate distinct shapes. For a small demo though, one can naturally painstakingly use either the \mathrm or \mathnormal alphabet commands to obtain, say under the italic option and no additional configuration, respectively the up shape and the italic shape.

None of the frenchmath, frenchmath*, and frenchmath+ options bear any direct connection with the frenchmath package by Antoine Missier (this is in contrast with the fact that the decimalcomma option is directly related with the decimalcomma package by the same author as it tells mathastext to require it). But see subsubsection 1.4.13 for important information about the utility of frenchmath* if the two packages are to be used concurrently.

- defaultalphabets: mathastext always defines \Mathnormal, \Mathrm, \Mathbf etc... to refer to the mathastext-ified text fonts, and redefines the math alphabets \mathrm, \mathit, \mathtt etc... (but not \mathcal of course) to use them. To avoid the remapping and keep the \mathrm et al. to refer to the non mathastextified fonts, use this option. The \Mathnormal et al. commands with an initial uppercase will always be available whether or not this option is made use of.

Prior to $1.3 z a$ (and since $1.15 f$), this option also prevented the package to declare the \backslash Mathnormal et al. and \mathnormalbold commands. In this context, recall that the dreaded "too many math alphabets" error can only occur on use in the document of too many of such commands, and not at the time of their declarations. The author's notes from time of 1.15 f release (2012/10/25) only say that it may not be "useful" to package user to have both (for example) \mathrm and \backslash Mathrm, which sounds weird if they are to acquire distinct meanings. So since $1.3 z a$ both will exist. In the default package configuration \mathrm is configured to expand to \backslash Mathrm (with some extra behavior under LGRgreek+), and with this option or the defaultrm option \mathrm is kept with its original meaning (and the LGRgreek+ extras do not work).
changed: - defaultnormal, defaultrm, defaultbf, defaultit, defaultsf, defaulttt: tell mathastext to not set up, respectively, the \mathnormal, \mathrm, \mathbf, \mathit, \backslash mathsf, and \mathtt commands to use the mathastext-ified font which are accessible always via \Mathnormal, \Mathrm, \Mathbf, \Mathit, etc...
Prior to $1.3 z a$ these options also prevented the creation of the corresponding mathastext command with an uppercased initial.

- ncccomma: it triggers the loading of the ncccomma package ${ }^{72}$ and configures mathastext for compatibility (this is canceled if nopunctuation option is used, or

[^34]basic as it implies it). Note that mathastext has NO auto-detection mechanism of ncccomma, the correct way is to use the eponymous option.
The effect of the ncccomma package will apply to the entire document body, even to portions using the normal or bold math versions with mathastext having been loaded with the subdued option. Also, in case of usage of package babel with french option, the effect of ncccomma will also apply to those parts of the document using another language than French. ${ }^{73}$

- decimalcomma: it triggers the loading of the decimalcomma package ${ }^{74}$. The same remarks apply as for the ncccomma option. In particular note that mathastext has NO auto-detection mechanism of decimalcomma, the correct way is to use the eponymous option.
- binarysemicolon: sets (except if nopunctuation is used) the semi-colon to let $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ use spacing of binary type, not punctuation type, around the semi-colon (it is often used in French mathematical typesetting as separator in interval denotations, when the extremities are decimal numbers, as the comma is used as decimal separator).
The effect applies to all math versions, even the normal and bold math versions with mathastext having been loaded with the subdued option.
- frenchmath*: does all three of frenchmath, decimalcomma and binarysemicolon.

Prior to $1.3 z b$, this option did what is now available via frenchmath+. The $1.3 z b$ change was made as a follow-up consecutive to the 2.7 release frenchmath. Indeed this option as explained in subsubsection 1.4.13 is provided as a compatiblity layer with frenchmath, and it was mandatory to modify its meaning to refer to package decimalcomma, not ncccomma, consecutive to the internal change of frenchmath at its 2.7 release to use decimalcomma.

- frenchmath+: does all three of frenchmath, ncccomma and binarysemicolon. This is what used to be called frenchmath* prior to 1.3 zb .
- endash, emdash: use the text font en-dash $(-)$ or even the em-dash (-, but this seems crazy) for the minus sign rather than -. endash option is default for the package.
- unicodeminus: use the MINUS SIGN U+2212 (requires fontspec.) Or, in the form unicodeminus $=\mathrm{HHHH}$ with four uppercased hexadecimal digits: use the U+HHHH code point. As noendash really means "use the hyphen from the text font", unicodeminus remains without effect under it, or, naturally, under nominus. Without this option, mathastext uses the EN DASH U+2013 by default for OpenType fonts.

[^35]- asterisk: this tells mathastext to replace the binary math operator $*$ and the control sequence \ast with versions which uses the text asterisk * suitably lowered, and with the correct spaces around it as binary operator. The amount of lowering ${ }^{75}$ is decided by the mandatory argument to the command \backslash MTlow erast $\{\langle$ dimen $\rangle\}$. The package does \MTlowerast\{. $3 \backslash$ height\}. Using the ex unit as in \MTlowerast\{.5ex\} is not a good idea as it does not scale properly in the script and scriptscript styles.
Attention that if using this option, inputs such as $\$ R^{\wedge} * \$$ or $\$ R^{\wedge} \backslash$ ast $\$$ raise errors and must be replaced by $\$ \mathrm{R}^{\wedge}\{*\} \$$, respectively $\$ \mathrm{R}^{\wedge}\{\backslash$ ast $\} \$$. The $*$ is now 'mathematically active, ${ }^{76}$ and * and \ast will obey the math alphabet commands (see subsubsection 1.8.4).
- activedigits: it makes all digits mathematically active! This is reserved to expert $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ users. See subsubsection 1.8 .5 for an example. Do not use this option if you don't intend to make use of such techniques to achieve special effects at some location of your document at least. (I know this goes without saying, but passing this option and not using it is only adding overhead to all your equations with digits).
- nodigits: no mathastext-ification of digits.
- noletters: This is quite antithetical to the package core aim, but here you go.

This option implies nohbar and defaultimath.
Note though that mathastext will still declare to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ two extra symbol fonts and define alphabet commands such as \Mathrm, \Mathnormal and \mathnormalbold which map to them. But ascii letters will if not in arguments of these commands not use the mathastext-font and all business of active letters (see subsubsection 1.8.5) is now irrevocably inaccessible.
If you simply want to avoid the overhead of math active letters, use rather \MTmathstandardletters in the preamble after having loaded the package (although this does not undo the fact that mathastext will have redefined what a letter does if it is catcode active but that remark should have been made in an even smaller typeface).

- nohbar: prevents mathastext from defining its own \hbar.
- noendash: the minus sign will be the - from the text font, not the en-dash - .
- nolessnomore: besides !?,.:;+-=()[]/\#\$\%\& mathastext treats also $<>\mid$ $\}$ and \backslash. Use this option to let it not do it. This is the default in case of OT1-encoding.
- further excluding options: noexclam !? nopunctuation ,.:; noplus, nominus, noplusnominus +- noequal $=$ noparenthesis () []/ nospecials \# \$ \% \& (and nodig. its and noletters mentioned earlier).

[^36]- alldelims: true by default, means that the characters excluded by nolessnomore are treated. Use this option in case of a mono-width OT1-encoded font.
- nosmalldelims: this prevents mathastext from trying to pick up in the text font the 'small variants' of some math delimiters; it only affects what happens when a character such as a left parenthesis (or [is used as a delimiter, and in the event that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has chosen the smallest sized variant. This has no impact on what happens when they are not used as delimiters: then, and if not disabled by the corresponding options, these characters are always picked up from the text font. ${ }^{77}$
- symbolgreek, symboldigits: to let Greek letters (digits) use the Symbol font.
- symbolre: replaces \backslash Re and \backslash Im by the Symbol glyphs $\mathfrak{R}, \mathfrak{I}$ and defines a \DotTriangle command (\therefore).
- symbolmisc: takes quite a few glyphs, including logical arrows, product and sum signs from Symbol. They are listed supra. Doing \{\smallint\} will maximize even more the use of the Symbol font.
- symboldelimiters: the characters apart from letters and digits will be taken from the Symbol font.
- symbol: combines symbolgreek, symbolre, and symbolmisc.
- symbolmax: combines symbol and symboldelimiters.
- eulergreek, eulerdigits: to let Greek letters (digits) use the Euler font.
- LGRgreek: this configures the Greek letters in math mode to use the text font (i.e. a priori the font which was default at time of loading the package) in LGRencoding. The command \MTgreekfont can be used to set a specific (LGRencoded) font family. Each use of \MTgreekfont must be followed at some point by a \Mathastext or \Mathastext[/version_name〉] to be effective. Any subsequent math version declaration will be influenced by it until $\backslash M T g r e e k f o n t ~ i s ~$ used again to configure another font for Greek letters. ${ }^{78}$
If $\backslash M T g r e e k f o n t$ is never used the font family for Greek under option LGRgreek will be, in all math versions except under subdued for the "normal" and "bold", the family which was the default at time of loading the package. You must use $\backslash M T g r e e k f o n t$ to change it.
See further on this topic the upgreek, itgreek, upGreek and itGreek options as well as the \MTupgreek, \MTitgreek, \MTupGreek and \MTitGreek commands.

[^37]It is up to the user to ascertain that the font family is indeed available in the LGR encoding; if it is not, only at time of the first math mode typesetting will ${ }^{L} T_{E} \mathrm{X}$ issue warnings such as this one:

Font shape 'LGR/ptm/m/n' undefined
using 'LGR/cmr/m/n' instead on input line 28
The LGRgreek option also triggers pre-definition of Greek character tokens such as \alphaup or \betait, see subsubsection 1.7.3 for the explanations.
Although under subdued option mathastext restores Latin (but see frenchmath) and Greek letters in the "normal" and "bold" math versions it still under LGRgreek option keeps in these "subdued" math versions the package declared \alphaup, \alphait,, and the associated \mathgreekup and \mathgreekit commands to access the underlying fonts, and also since 1.3za \mathgreekupbold and \mathgreekitbold.
The font used by these math alphabet commands in the subdued "normal" and "bold" is either the one in LGR encoding which was the family default at time of loading the package or the one configured last by $\backslash M T g r e e k f o n t$ when the command \backslash Mathastext (without optional argument) was used in the preamble.
1.3za fixes here a bug which froze the target font to be the one at time of loading the package: this bug applied (only) to the subdued "normal" and "bold" math versions and was not readily visible as there is a priori no reason to use in these subdued math versions these mathastextprovided Greek font alphabets.

- LGRgreeks: each declared math version will be supposed to be with a font which is also available in LGR-encoding. This is a shortcut to using \MTgreekfont systematically to keep in sync in all declared math versions the font for Greek with the font for Latin letters. Please note that macro \MTgreekfont becomes then inoperant, and if you need one math version without this Latin-Greek synching, you will have to use rather LGRgreek and then \MTgreekfont manually appropriately.
- LGRgreek+ and LGRgreeks+: they extend respectively LGRgreek or LGRgreeks to let Greek letters control sequences when in the scope of \mathrm, \mathit, and \mathbf behave as would be expected by LaTeX users who have not read fntguide.pdf or any other $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ documentation but have used unicode-math. See subsubsection 1.7.5 for details.
- selfGreek: this is for a font which is also available in OT1-encoding and contains the glyphs for the default eleven capital Greek letters.
This option should have been named OT1Greek as it bears about the same relation with OT1 encoding (for eleven capital Greek letters) as LGRgreek does with the LGR encoding (for the complete no-diacritics Greek alphabet).
- selfGreeks: each declared math version will be supposed to be with a font with the eleven capital Greek letters in its OT1-encoded version.
- upgreek, itgreek: options to tell mathastext to use \MTgreekupdefault or \MT greekitdefault for the lowercase and uppercase Greek letters shape. These two
commands can be defined prior to loading the package. This option is operant only under the LGRgreek(s) or selfGreek(s) options.
- upGreek, itGreek: influence only uppercase Greek.
- mathaccents: use the text font also for the math accents. As in vanilla $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, they are taken from the font for the digits and \log-like names. Obey the alphabet changing commands.
- unimathaccents: extends mathaccents to OpenType fonts. Gave bad results in my brief testing.
- defaultimath: do not overwrite \imath and \jmath to use \inodot and \jnodot.
- defaultmathsizes: do not change the $\mathrm{IAT} \mathrm{EXX}^{2}$ defaults for the sizes of exponents and subscripts.
- fouriervec: provides a \fouriervec command. The user can then add in the preamble \let\vec=\fouriervec. There is also always available a "poor man" vec accent \pmvec for upright letters.
- everymath: this option tells mathastext to employ as in the 1.3 releases the \everymath/\everydisplay registers to store certain actions to be executed at each entrance into math mode. The main change with 1.4 is that mathcode changes done by user (or possibly via language changes in a multilingual babel context) in the document body, and which apply to those characters which math astext used to handle as part of \everymath/\everydisplay, will now have an effect, whereas with earlier releases or this one with the everymath option, they may get overruled by mathastext. Use everymath for backward compatibility if needed (and only if needed). Notice though that regarding ascii letters, there is no return to the pre-1.4: they will not acquire their mathcode active status only at each entrance into math mode, even with this option, but once and for all at package loading time, if not subdued, or when using \MTversion to enter a non-subdued math version.
Please report breakages due to the 1.4 release, which made it necessary for you to use this option everymath as workaround.
The option is destined to be removed at next major release and it will warn the user about this.

Thanks to Kevin Klement, Tariq Perwez and Ricard Torres for sending bug reports and feature requests when the first version of the package was issued.

Numerous examples will be found there:
http://jf.burnol.free.fr/mathastext.html
http://jf.burnol.free.fr/showcase.html

4 Change log

1.4b [2024/07/27]

* Fix a regression at 1.4 regarding option nodigits.
* New option: noletters. I am in old age now so I can provide an option completely antithetical to my life work.
* Option everymath which is destined to be removed at next major release warns user about it. As major releases tend to happen once per decade I think the constant nagging will become insufferable and you will adapt to the 1.4 changes rather than persisting into using this option.
1.4a [2024/07/20]
* There was a documentation glitch in 1.4 and also a problem with the \backslash MTprimeskip feature being lost under the emergency fall-back everymath option.

1.4 [2024/07/20]

* Since 1.2 of $2012 / 12 / 20$, mathastext has used mathematically active characters to propose certain advanced functionalities. For reasons half lost in the mists of time but whose main one was surely to keep the meaning of the active shape of characters unchanged outside of math mode, this mathematical activation, and (in most cases) the definitions of what active characters do, were done again at *each* entrance into math mode. At this 1.4 release, mathastext does not inject *any* code whatsoever into the \everymath and \backslash everydisplay toks registers anymore (except for one font-related hack needed under LuaLaTeX, see below). Your documents will compile a tiny bit faster.
* In (unsual) documents where users play with catcodes and mathcodes it is impossible to keep exact backward compatibility, because documented user commands which acted formerly a toggles with delayed action now will enact changes immediately if in the document body. In practice consequences are expected to be few, because catcode active characters are (as was already the case with earlier releases) hacked only when they are Babel shorthands and they are then modified in a way altering only their action in math mode. The precise description of
what mathastext does when mathematically activating (or not) a character, depending on circumstances, is to be found among small-print comments in the section "Extended scope of the math alphabets commands". See also the documentation of the \MTmathactiveletters command for some specifics regarding ascii letters.
* New option: everymath. It instructs mathastext to revert (partially) to its legacy code which uses \everymath/\everydisplay. This reversal is partial, the handling of ascii letters not being included into it. The everymath option is there only to try as a quick fix in case transition to this release causes a major problem in a user document and time is lacking to investigate. Please report to the author such issues. Option everymath is destined to be removed at next major release.
* New option: activedigits. Enjoy.
* It is now easier to hook into the mathastext architecture for mathematically activated ascii letters. See the new section "Hacking letters (and even digits) for special tasks".
* Bugfix: do not override special behavior of the math mode dot in babel-spanish.
* Bugfix: A desperate hack related to LuaLaTeX font matters and dating back to 1.30 2016/05/03 had been for some years in dire need of an update regarding fonts using Renderer=HarfBuzz. This is done now. Thanks to tex.sx user691586 for report. This is currently the sole remaining usage of \everymath/\everydisplay.
* Bugfix: an optional feature related to $\backslash\{$ and $\backslash\}$ was broken since an upstream LaTeX change at its 2020-02-02 release.
* With option symbolmisc, those math symbol macros formerly defined via \DeclareRobustCommand are now declared via \backslash protected \backslash def.
* Removal of legacy branches previously kept to support LaTeX earlier than 2020-02-02.
* Removal of support for EU1 and EU2 font encodings.
* Option noasterisk deprecated at 1.2 d 2013/01/02 has (finally) been removed.
* Four test files previously included and auto-extracted from the distributed dtx have been dropped. One of them is still available on the package homepage.
* Some parts of the documentation have been massively re-ordered and even to some extent improved. But there may be some occasions where obsolete statements will be found having the legacy \everymath/\everydisplay situation as background.
1.3zb [2023/12/29]
* Update to the frenchmath* option to maintain compatibility with the [frenchmath](https://ctan.org/pkg/frenchmath) package whose release $2.7(2023 / 12 / 23)$ has replaced the ncccomma package by the decimalcomma package.
* The frenchmath+ option holds the former meaning of frenchmath*.
* Option decimalcomma to load the eponymous package by Antoine Missier. This is tacitly done by frenchmath*.
* No more messages sent to the console output during loading, only info messages going into the log, and using (more or less) the official LaTeX interface: after close to 13 years of development of this package it was perhaps finally the time to do it.
* Documentation improvements. Close to 13 years after the birth of the package, and as it nowadays rarely wakes up from dormancy, this was almost last chance to try to improve a few things.
1.3za [2023/12/20]
* Under LGRgreek and LGRgreeks options, new math alphabets \mathgreekupbold and \backslash mathgreekitbold.
* New options LGRgreek+ and LGRgreeks+.
Thanks to Holger Gerhardt for feature request and code ideas. Please find and read the relevant documentation in the PDF.
* The meaning of defaultalphabets and related individual options such as defaultbf has been modified (reverted to pre 1.15 f release): even under these options, the package always creates \mathnormalbold, \Mathnormal, \backslash Mathrm, \Mathbf etc..., commands. This may
break documents which used these options in order to reserve these command names. This was done with some hesitancy, but for the sake of internal logical coherence.
* Fix an obscure bug with no real consequences regarding interaction of subdued with LGRgreek and $\backslash M T g r e e k f o n t$. See the LGRgreek documentation in the complete list of options for details.
* Fix long-standing hyperlink problems in the documentation: blue color words should now all be functioning hyperlinks.
1.3z [2023/09/01]

Fix 1.3 y regression which broke selfGreek option due to internal renamings. Thanks to Stephan Korell for report.
1.3y [2022/11/04]
(the 1.3 x had an annoying documentation bug, and had already been pushed to CTAN, hence the version increase to $1.3 y$)

* mathastext now requires the \expanded primitive (which is available with all major engines since TeXLive 2019).
* Revisit parts of the documentation (mainly the Examples, and the section on Greek letters) and shuffle the other parts to surely improve things. Mention the [mathfont](https://ctan.org/pkg/mathfont) and [frenchmath](https://ctan.org/pkg/frenchmath) packages.
* Add the ncccomma option which loads the [ncccomma](https://ctan.org/pkg/ncccomma)
package to allow the comma as decimal separator.
* Add the binarysemicolon option to let the semi-colon be of type \mathbin, not \mathpunct.
* Add the frenchmath* option which does all three of frenchmath, ncccomma and binarysemicolon.
* Under the LGRgreek and LGRgreeks options only:
- make available upright and italic Greek letters in math mode via \alphaup, \alphait, ... control sequences, in addition to those not using such postfixed-names.
- add \backslash mathgreekup and \backslash mathgreekit math alphabets.
- add \MTgreekupdefault and \MTgreekitdefault. The former replaces \updefault which was used in some places and since LaTeX 2020-0202 caused systematic Font Warnings about the substitution of up by n.
These new features required an extensive internal refactoring which is expected to not induce changes to most existing documents. But it may induce changes to those using some unusual configuration in the preamble, as made possible via the package macros; this can apply only to documents authored by those few people who actually read the documentation. For full details make sure to read the PDF documentation about this change.
* Fix " \backslash Digamma under LGRgreek option uses the shape for lowercase not uppercase Greek".
* Fix some incongruities in log messages related to Greek letters and emitted during math version creation in the preamble.
1.3w [2019/11/16]
* LaTeX 2019-10-01 release (up to patch level 3 inclusive) together with amsmath conspired :-) to break mathastext, in connexion with math accents. This has been fixed upstream, but I am releasing nevertheless a hot fix to this https://github.com/latex3/latex2e/issues/216 issue (this is compatible with future LaTeX releases).
* Fix: the \hbar is originally a robust command but becomes a \backslash mathchardef token if (e.g.) amsfonts is loaded and then with recent LaTeX \backslash hbar $<$ space $>$ is made undefined and mathastext definition of it remained without effect. The \mathastext own \hbar is now defined \backslash protected.
* Fix: option noendash (or symboldelimiters which implies it) caused (since 1.3 u) a bug under Unicode engines when setting up the minus sign.
* Version names declared via the optional argument of \Mathastext or as first argument of \backslash MTDeclareVersion must not be normal or bold. Enforce that! (this was marked as a bug to fix since 2012/10/24...)
1.3v [2019/09/19]
* LaTeX 2019-10-01 release has made more
math macros robust. This applies in particular to the math accents and to the \hbar. This required for mathastext to adapt. Also \leftarrowfill and \rightarrowfill are now defined robust by the kernel, hence mathastext does the same. These changes are dropped if mathastext detects an older LaTeX format.
* These LaTeX kernel changes motivated an examination of some redefinitions done (optionally) by mathastext:
- The user math alphabet macros got redefined as expanding to some other (robust) math alphabet macros, but were not robust in the strict sense. This does cause some issues for moving arguments in the context of multiple math versions, hence it was a bug. The special behavior of the math alphabet commands (they redefine themselves and other macros on first use) makes is somewhat problematic for mathastext to keep them updated across math versions and at the same time strictly LaTeX2e robust. Thus mathastext now requires the e-TeX primitive \backslash protected and uses it for the definitions of the user level math alphabet macros.
- There are a number of \backslash mathchardef tokens which (under certain options and/or configuration via the package user interface), mathastext redefines as macros. These macros cause no issue in moving arguments (they are not "fragile"), still it is probably better if they expand only at the time of typesetting. To this effect they are now also \protected: \exists, \forall, \colon, \backslash setminus, \mid, \prod, \sum, \imath, \jmath. - The macro \vert (which expands to a \delimiter) is now defined robust by LaTeX. Its mathastext redefinition is a \backslash protected one rather.
- The $\backslash\{$ and $\backslash\}$ (which get redefined only under \backslash MTexplicitbracesobeymathxx regime) are now strictly robust in the LaTeX2e sense (formerly they were \let to some robust macros, and this did not make them strictly LaTeX2e-robust entities).
* The various changes in mathastext described in the previous item apply independently of the LaTeX release version. The LaTeX format itself requires the e-TeX extensions since 2015.
1.3u [2019/08/20]
* new feature: the initial release dealt with only one font, and although shortly thereafter the 1.11 version added support for extended
math versions, it was documented that some font-dependent set-up (minus as endash, dotless \mathbf{i} and \mathbf{j}, hbar, math accents) was done only once. This release makes the relevant characters font encoding savvy in each mathastextextended math version. Thus, they should render correctly even with multiple math versions using fonts with varying encodings.
This reinforces importance of using \backslash MTversion and not the LaTeX \backslash mathversion when switching to a new math version (which got declared via the package interface). The implementation is compatible with Unicode engines and mixed usage of TU encoding (OpenType fonts) with traditional 8bits TeX font encodings. For all engines, all used (8bits) encodings must have been passed as options to the fontenc package.
Thanks to Falk Hanisch for feature request and code suggestions.
* new option unimathaccents: this adds to option mathaccents the demand to use the text font accents for OpenType fonts in math mode via the \Umathaccent primitive. Indeed, as my testing showed that this gave non-satisfactory results both with XeTeX and LuaTeX regarding the horizontal placement of the accents, the main option mathaccents acts only on 8bits encoded fonts.
* bugfix: the \backslash Mathastext without optional argument forgot to repeat some font-encoding dependent initialization set-up done originally during package loading.
* bugfix: under the subdued option macros \backslash MTmathactiveletters or \MTnonlettersobeymathxx now act like no-ops if issued explicitly while in the normal or bold math version. Formerly, this was not the case and could cause bugs such as a disappearing minus sign in math mode.
* bugfix: the letter h used in the \backslash hbar obeyed the extra skips as set-up by \backslash MTsetmathskips, badly interfering with the horizontal positioning of the bar accent. They are now ignored (as well as the added italic correction).
1.3t [2018/08/22]
* bugfix: the 1.3 s bugfix about subdued compatibility with fontspec was deficient.
* bugfix: very old (v1.2, 2012/12/20) bug causing low-level TeX error during package loading (with pdflatex) when setting up the math
minus sign to be the text font endash character, in cases with \encodingdefault other than OT1, T1 or LY1, e.g. something like T2A.
* \imath and \jmath obey the subdued regime. And the minus sign is now handled especially to ensure perfect compatibility with the subdued option.
* breaking change: mathastext does not redefine anymore $\backslash i$ and $\backslash j$ to let them be usable both in text and math mode.
1.3s [2018/08/21]
* fix to an issue with subdued option in a fontspec context.
1.3r [2016/11/06]
* documentation tweaks.
1.3q [2016/10/31]
* new option unicodeminus.
* the Recent Changes section of the documentation has been removed as it was a duplicate of information available in the Change Log.
* some other changes in the documentation, in particular the use of straight quotes in verbatim.
1.3p [2016/05/13]
* bugfix: release 1.3 n had forgotten to activate by default its new customization of the amsmath macro \newmcodes@ (it was done from using \backslash MTversion in the document body but not by default at start of body.)
* public name \backslash MTfixmathfonts for a 1.3o macro.

1.3o [2016/05/03]

* mathastext fixes an issue related to a feature of LuaLaTeX and luaotfload that OpenType fonts are declared in one of two modes: node and base, and only the latter is functional in math mode. But by default text fonts are declared in mode node. Thus mathastext now intervenes to make it so that the font it declares in math mode will use mode base. This fixes issues with for example old style figures being used while the text font used lining figures (or vice versa, depending on the font). But see the code comments for more.
1.3n [2016/04/22]
* at long last, mathastext takes care properly of annoying and perplexing amsmath's \backslash newmcodes@. The very recent change in amsopn.sty finally made it compatible with Unicode engines, but anyhow, mathastext must do its own patch to use the correct font. All of this taking into account the various options passed to the package. Lots of trouble for a tiny thing.
1.3m [2016/04/02]
* minor code maintenance before annual TL freeze.
1.31 [2016/01/29]
* compatibility with fontspec's upcoming switch from EU1/EU2 to TU common to both Unicode engines.
1.3k [2016/01/24]
* typos fixed in the documentation. In particular, the README link to the package homepage had remained broken from day one of the package releases: mathastext.html therein was misspelled as mathsastext.html ! (but the pdf documentation had the correct link; as well as the CTAN catalogue).

1.3j [2016/01/15]

* renamed and modified recent 1.3 i 's $\backslash \mathrm{MTac}$ tivemathoff into $\backslash \mathrm{MTeverymathoff}$. \backslash MTeverymathdefault.
* subdued mode is a bit stronger: also the asterisk reverts to the default (if it was modified due to option asterisk), the added extra \backslash mskip's (useful with upright fonts) for ', \backslash exists, and \backslash forall are suppressed rather than re-configured to use 0mu. Related new commands \MTexistsdoesskip, \MTforalldoesskip, \backslash MTprimedoesskip, \backslash MTnormalexists, \backslash MTnormalforall, \backslash MTnormalprime.
* the toggle for using mathematically active letters is only emitted once during package loading; the \backslash Mathastext command does not do it anymore; the use in the preamble of \MTmathstandardletters, or \backslash MTnoicinmath and related commands is not overruled by later use of \backslash Mathastext.
* quite a few documentation improvements and rewrites, particularly in the description of commands which are related to the modifications of mathcodes (mainly for math activation
of characters or letters) as done by mathastext at \everymath or \everydisplay.
$1.3 \mathbf{i}$ [2016/01/06]
* \url from url.sty as well as \url and \nolinkurl from hyperref.sty use math mode and (by default) the monospace text font. To avoid mathastext overwriting the special preparation done by \{url,hyperref\}.sty the commands $\backslash \mathrm{url} / \backslash$ nolinkurl are patched to do automatically \backslash MTactivemathoff (now \backslash MTeverymathoff) before entering math mode.
* the extra skips specified by \backslash MTsetmathskips are not inserted around letters if inside the arguments of math alphabet commands, or within operator names.
* the added explicit italic corrections (for non-oblique fonts) were disabled within math alphabet scopes, except mathnormal; they are now disabled within all math alphabets, inclusive of mathnormal.
1.3h [2015/10/31]
* bugfixes: since 1.3 d 2014/05/23 the option symbolgreek caused \backslash ell to become undefined, and, similarly but far worse, options selfGreek, selfGreeks caused all lowercase Greek letters \alpha, \beta, etc.. to become undefined.

1.3g [2015/10/15]

* following 2015/10/01 LaTeX release, removal of the "luatex" prefix from the names of the LuaLaTeX math primitives. Compatibility maintained with older LaTeX formats.
$1.3 f$ [2015/09/12]
* the replacement of amsmath's \resetMathstrut@, when it is done, emits an Info rather than a Warning as this could be potentially stressful to some users.
* the README self-extracts from the dtx source, as a text file README.md with Markdown syntax.
1.3e [2015/09/10]
* bugfix: under option nosmalldelims, \backslash lbrace and \backslash rbrace were redefined as math symbols and could not be used as delimiters.
1.3d [2014/05/23]
* A 2015/02/26 edit to the documentation mentions the improved compatibility of mathastext with the latest (3.34)
beamer release: no more need for usefonttheme\{professionalfonts\}.
* new commands \MTstandardgreek and \backslash MTcustomgreek.
* The Greek letters, in case of use of one of the package related options, are left to their defaults in the normal and bold math versions if the subdued option was also used (this was so far the case only with options LGRgreek/LGRgreeks).
* \newmcodes@ of amsmath is left untouched if package lualatex-math is detected.

1.3c [2013/12/14]

* added a starred variant to \MTversion which tells mathastext to only do the math setup and not modify the text fonts.
* added second optional version name argument to \backslash Mathastext and to \backslash MTDeclareVersion, to transfer settings for things not otherwise changed by mathastext from a math version to the one declared. This is mainly for symbols and large symbols to be the bold ones when the user sets up the series of a mathastextified font to be bold in a mathastext-declared version.
* renamed \backslash defaultprod to \backslash MToriginalprod, \backslash defaultsum to \backslash MToriginalsum, (this is in case of option symbolmisc).
* changes to the dtx organization; options for generating the documentation can be customized in generated mathastext.tex file.
* 1.2 d code for $\backslash \#, \backslash \$, \backslash \%$, and $\backslash \&$ modified erroneously the earlier correct 1.2 c code and created a bug showing up with more than 16 math families (a possibility only with lualatex or xelatex).
1.3a [2013/09/04]
* the somewhat silly \backslash string's are removed from the \backslash MTsetmathskips command of release 1.3 , thus allowing its first argument to be a macro, or any expandable code, giving a letter.
* the amsmath \resetMathstrut@, which is incompatible with a mathematically active parenthesis (is now modified only if necessary (i.e. $\backslash @$ only when \backslash MTnonlettersobeymathxx is issued) and is restored to its original value if not needed anymore (i.e. after \backslash MTnonlettersdonotobeymathxx, as for example when switching to the normal version under option subdued).
* improved documentation.
1.3 [2013/09/02]
* commands \backslash MTsetmathskips and \backslash MTunsetmathskips added.
* commands \MTmathactiveletters and \backslash MTmathstandardletters to govern the math activation of letters independently of its use for insertion of the italic corrections (\backslash MTicinmath and \backslash MTnoicinmath correspondingly modified).
* the new \luatexUmathcodenum as available since TL2013 allows identical treatment by mathastext of $=$ and - under both LuaTeX and XeTeX.
* \newmcodes@ of amsmath is left untouched in case of option basic.
* a sentence containing \| which was written to the log during the loading caused a problem if \mid was active (typically if \backslash MakeShortVerb $\{\backslash \backslash\}$ was added to the preamble prior to the loading of mathastext).
* some preemptive measures taken regarding things such as \backslash mid, \lbrace, and \backslash rbrace, as some packages define these things in manners which made the re-definitions done by mathastext issue errors.
$1.2 f$ [2013/01/21]
* minor code improvements. Change log added to the user manual.
1.2e [2013/01/10]

This version should be the last one in the 1.2 series as it seems to correct most of the main problems which were introduced with the massive use of mathematically active characters in versions 1.2 and 1.2 b .

* It is indeed a thorny point when one wants to modify an active character in math mode only (without breaking usage in label's and ref's for example). The package now does that _only_ if the activation originated in the Babel system as it is then possible to modify appropriately the Babel macros \user@active<char> and \normal@char<char>, at the time of entering math mode (mathastext does all its activation job at \backslash everymath and \backslash everydisplay).
The relevant issues are discussed in section 2.10 of the user manual, in the test file mathastexttestalphabets.tex, and in the source code comments for macro \mst@mathactivate. The
inherent incompatibility of Babel with packages having made mathematically active the characters itself makes document active is circumvented by this interference of mathastext. A generally applicable Babel patch could be derived from the method used by mathastext.
For the non catcode active characters, mathematical activation is used. This is done at the entrance in math mode.
* Sadly, the feature of added italic corrections introduced in version 1.2b did not behave as described in the user manual, due to forgotten group braces. Fixed.
* The command \backslash MTlowerast from the user manual of v1.2d was not the one implemented in the source code. Fixed.
* The test files automatically extracted from a latex run on the dtx file have been revised and extended.
* The code is better documented.

1.2d [2013/01/02]

* an incompatibility with amsmath (its macro \resetMathstrut@), exists since version 1.2 of the package. This is fixed here.
* various improvements in dealing with the asterisk and in the mechanism of letting nonletter symbols obey the math alphabet commands.
* the noasterisk option is deprecated and made a no-op.
* documentation extended and improved.

1.2c [2012/12/31]

* mathastext now inserts automatically after all (latin) letters in math mode their italic corrections, if the font used is upright (sic). This improves the spacings for the positioning of subscripts. The feature is de-activated inside the math alphabets commands (apart from \backslash mathnormal), so as to not prohibit the formation of ligatures.
* the documentation has been extended to explain in detail the issues which are relevant to the new feature of added italic corrections.
* version 1.2 had some bad bugs when confronted to active characters. This is corrected and additionally \backslash MTnonlettersdonotobeymathxx is made the default, as the user input is too much constrained in its absence.
* a less fatal, but still annoying, typo had made the dot in 1.2 of type \backslash mathpunct rather than \backslash mathord.
* the inner namespace has been rationalized a bit.
1.2 [2012/12/20]
* a new command sets up the amount of space to be automatically inserted before the derivative glyph (useful when using an upright font).
* the scope of the math alphabets has been extended to apply to the non-alphabetical characters, and also to operator names.
* the format of the dtx file has changed. The package file is self-extracting from the dtx, and four additional test files are also produced during latex mathastext.dtx.
1.15f and 1.15g [2012/10/25]
* $\backslash \$, \backslash \#, \backslash \&$, and $\backslash \%$ had been re-defined by mathastext since its inception in a rather strange (but working) way, which could cause surprises to other packages. Fixed.
* the subdued mechanism for the math alphabets is implemented in a simpler and more efficient manner than in 1.15e.
* the defaultxx options act a bit differently, and are more useful in case of a too many math alphabets situation.
* various improvements in the documentation.
* general clean up and better commenting of the source code.
1.15e [2012/10/22]
* new user commands to specify skip or glue to be inserted after the math symbols \exists and \forall
* complete (user transparent) rewrite of the code implementing the subdued option; and its action has been extended to apply also to the \backslash mathbf, \mathit, \mathsf, \mathtt alphabets and not only to \backslash mathrm and \backslash mathnormal as in the previous versions.
* improvements in the documentation.

1.15d [2012/10/13]

* the Unicode situation is now correctly treated, throughout the code (this had been left
in a half-done way from version 1.14 of April 2011).
* this includes an issue related to amsmath and its DeclareMathOperator macro which has been fixed,
* and the code related to \backslash relbar and \backslash Relbar (and \models) has been revised.
1.15c [2012/10/05]
* it is now possible to use distinct fonts in

LGR encoding for the Greek letters according to the current math version.

* improvements to the documentation.

1.15b

* corrected a 'feature' of 1.15 which was backward-incompatible
* improvements to the pdf documentation
1.15 [2012/09/26]
* the subdued option allows the mathastextification to act only locally.
* some measures taken to deal with amsmath related issues when using xetex or luatex.

1.14c

* a bug is fixed: the \backslash Mathastext macro reinitializes the fonts in the normal and bold math versions, but it also erroneously redeclared the math alphabet changing commands which could have been set up in previously defined math versions (via earlier calls to \Mathastext $\backslash[$ version_name $\backslash]$).

1.14b [2011/04/03]

* there was a bug with $\backslash \$, \backslash \#, \backslash \&, \backslash \%$ in math mode which showed up when ten or more math families had been declared. This bug affected also the minus sign under the same circumstances, when Unicode engines were used. Fixed.
* the options LGRgreek and selfGreek act now a bit differently, and new options LGRgreeks and selfGreeks have been defined.
* I also cleaned up a bit the code, for a more structured namespace.
1.14
* mathastext now modifies also the math alphabets \mathit, \mathsf and \backslash mathtt, thus making it a quite generic complete manner to adapt the math configuration to fonts provided with no math support.

1.13d

* new macros \MTstandardgreek and \MTcustomgreek

1.13b

* when the Symbol font is used for \backslash prod and \sum this will be only for inline math; display math will use the default glyphs
1.13 [2011/03/11]
* the LGRgreek option is added.
* internal changes for better readability of the code.
1.12
* various bugs have been corrected.
* the endash and alldelims options are active by default.
* the package is more Unicode aware.
* the \Mathastext command has been improved to facilitate the mechanism of math versions also when using XeTeX or LuaTeX (with package fontspec.)
* the en-dash and dotless i and j now work with all encodings, Unicode inclusive.
1.11 [2011/02/06]
* optional argument to \backslash Mathastext macro.
1.1 [2011/02/01]
* options italic and frenchmath.
1.0 [2011/01/25]
* Initial version.

5 Implementation

The comments are a kind of palimpsest. Indeed they are not destined to the reader but to the author: when coming back to the source code perhaps years after having last looked at it, all bits of past information even if obsolete are useful. Not only comments but perhaps also some ancient parts of the code itself are a bit strange (the author hardly new any $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ at that time).

For about the same reason, there may be some long macro names which do not fit in the margins and that one sees only partially. The author sometimes has used a workaround to hyphenate, but not systematically. Life is time-limited. At 1.4 large chunks of code have been re-ordered but the global architecture is still somewhat of a mess and doing some such large diffs makes it sometimes difficult to follow small bits of code across commit history, so this is done reluctantly.

The usual catcode regime for letters and digits is assumed and some characters such as *, $\cdot, ",=$ are supposed to be of catcode other at the time of loading of mathastext. The source of mathastext takes precautions for some other characters such as the right quote ', which may thus be active with no harm at the time of loading (note added 2024/07/16: very hard to understand why I was so paranoid, but I have kept this annoying constraint).

By the way, I think $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ should have provided to authors a standard macro to be used at the beginning of a style file to make sure the catcodes are standard. Shorthands created by Babel should be mostly no problem as Babel does the activation only at the \begin\{document\}. }
1.4 removes a few code branches still there for support to old $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ and requires $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ 2020-02-02 (which made
{ and
} \protected; earlier release 2019-10-01 had math macros such as the math accents and \hbar robust and so far we kept supporting both new and old contexts).
1 \NeedsTeXFormat\{LaTeX2e\} [2020/02/02]
2 \ProvidesPackage \{mathastext\}
3 [2024/07/27 v1.4b Use the text font in math mode (JFB)]
$1.3 z b$ avoids writing mathastext info messages also to console output, only log file. Make prefix occupy 20 not 25 characters for alignment with LaTeX Font Info, as the latter often issues info messages. For similar reason the usages of \PackageInfo will be done with empty lines above and below for better visual separation from the voluminous output of the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ font system.

```
4\def\mst@infoline#1{\immediate\write\m@ne
5 {(\space\space\space mathastext:\space\space\space) #1}}
6\immediate\write\m@ne{}
7\PackageInfo{mathastext}{Starting the math mode configuration\@gobble}
Testing for XGHTEX and LualATEX.
\(1.3 \mathrm{~g} 2015 / 10 / 15\) : update for the naming of primitives, the situation has evolved both on \(\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) side and on the LuaIATEX side (LaTeX base 2015/10/01): I was told "U" named math primitives were always available for LuaLATEX. For \(\mathrm{X}_{\boldsymbol{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\), the XeTeX prefix got replaced by U prefix with 0.99.. a certain number of 9 . I opted for rather simple approach of just trying the "modern" names and if they don't exist fall back on earlier (and in danger of being deprecated) names.
```

```
\let\mst@Umathcharnumdef\Umathcharnumdef
\let\mst@Umathcodenum \Umathcodenum
\let\mst@Umathcode \Umathcode
\let\mst@Umathchardef \Umathchardef
\let\mst@Umathaccent \Umathaccent
newif\ifmst@XeTeX
```

```
\ifx\XeTeXinterchartoks\@undefined
    \mst@XeTeXfalse
\else
    \mst@XeTeXtrue
    \ifx\mst@Umathcharnumdef\@undefined
        \let\mst@Umathcharnumdef\XeTeXmathcharnumdef
        \let\mst@Umathcodenum \XeTeXmathcodenum
        \let\mst@Umathcode \XeTeXmathcode
        \let\mst@Umathchardef \XeTeXmathchardef
        \let\mst@Umathaccent \XeTeXmathaccent
    \i
\i
\newif\ifmst@LuaTeX
\ifx\directlua\@undefined
    \mst@LuaTeXfalse
else
    \mst@LuaTeXtrue
    \ifx\mst@Umathcharnumdef\@undefined
        \let\mst@Umathcharnumdef\luatexUmathcharnumdef
        \let\mst@Umathcodenum \luatexUmathcodenum
        \let\mst@Umathcode \luatexUmathcode
        \let\mst@Umathchardef \luatexUmathchardef
        \let\mst@Umathaccent \luatexUmathaccent
    \i
\i
\newif\ifmst@XeOrLua
\ifmst@LuaTeX\mst@XeOrLuatrue\fi
41 \ifmst@XeTeX \mst@XeOrLuatrue\fi
```

1.4. I only checked this is correct with TL2024. The macro will be used with \#1 a catcode 11 or 12 token or a one character control sequence such as
\#.

```
ifmst@XeTeX
    \def\mst@OnlyIfNotMathActive#1{%
        \ifnum\mst@Umathcodenum`#1="1FFFFF
                \expandafter\@gobble
            \else\expandafter\@firstofone
            \i
    }
\else\ifmst@LuaTeX
    \def\mst@OnlyIfNotMathActive#1{%
            \ifnum\mst@Umathcodenum`#1="1000000
                \expandafter\@gobble
            \else\expandafter\@firstofone
            \i
        }
else
    \def\mst@OnlyIfNotMathActive#1{%
            \ifnum\mathcode`#1="8000
            \expandafter\@gobble
            \else\expandafter\@firstofone
```

61
62 \quad \}fi
$63 \backslash f i \backslash f i$
1.2: all inner macros of mathastext now starts with \mst@ for a cleaner name-space.
1.31 2016/01/29: hmmm... at this late stage where nobody would expect me to still look at the code, I have found at least two macros which still didn't: \do@the@endashstuff and \do@the@emdashstuff.

Ok, doing something more serious: compatibility with upcoming TL2016 fontspec and its switch to 'TU' NFSS font encoding in replacement of 'EU1/EU2' Anyhow, the code in mathastext has been common to the two Unicode engines for a while, hence it is not hard to adapt to the replacement of EU1/EU2 by TU, maintaining compatibility with legacy installations.

At 1.4 the support for obsolete EU1 and EU2 font encodings has been removed.
\mst@OneifUniEnc The \mst@OneifUniEnc is expandable but must be used after having set \mst@tmp@enc...

```
64 \def\mst@oti{OT1}
65\def\mst@tu{TU}
66\def\mst@OneifUniEnc{\ifx\mst@tmp@enc\mst@tu1\else0\fi}
67\newif\ifmst@goahead
68\newif\ifmst@abort
```

\mst@enc
\mst@fam
\mst@ser
\mst@opsh
\mst@bold
\mst@ltsh
Macros to store the font settings, each math version will store its own records.

```
69\def\mst@enc{\encodingdefault}
70 \def\mst@fam{\familydefault}
71 \def\mst@ser{\seriesdefault}
\mst@opsh will hold default shape for operator names.
\mst@ltsh will hold default shape for letters.
72 \def\mst@opsh{\shapedefault}
73\def\mst@bold{\bfdefault}
74 \def\mst@ltsh{\shapedefault}
```

\mst@greekfont1.15c:forusebytheLGRgreekandselfGreekoptions.Definedasan\edefinordertobeabletoset-uponceandforalltheGreekatthetimeof\usepackage.Modifiableinthepreamblevia\MTgreekfont\{〈font_name〉\}\Mathastext.undefined

```
75 \edef\mst@greekfont{\familydefault}
```

Package options
2011/03/09: 1.13 introduces the option LGRgreek and systematic use of $\backslash i f \ldots$ conditionals, for better readability (by myself) of the code.
$1.3 y$ of 2022/11/03 adds ncccomma, binarysemicolon and frenchmath* options.
$1.3 z a$ adds LGRgreek+ and LGRgreeks+.
1.3 zb adds decimalcomma and modifies frenchmath* to use it. And provides frenchmath+ as an alias to former frenchmath*. Consecutive to the change at v2.7 of frenchmath which replaced ncccomma by decimalcomma and broke the compatibility recipe explained in subsubsection 1.4.13.
1.4 adds options everymath and activedigits.
1.4 b adds noletters.

76 \newif \ifmst@italic
77 \newif \backslash ifmst@frenchmath
78 \newif $\backslash i f m s t @ n c c c o m m a$

```
newif\ifmst@decimalcomma
\newif\ifmst@binarysemicolon
    \DeclareOption{italic}{\mst@italictrue
            \def\mst@ltsh{\itdefault}}
        \DeclareOption{frenchmath}{\mst@frenchmathtrue\mst@italictrue
        \def\mst@ltsh{\itdefault}}
    \DeclareOption{ncccomma}{\mst@ncccommatrue}
    \DeclareOption{decimalcomma}{\mst@decimalcommatrue}
    \DeclareOption{binarysemicolon}{\mst@binarysemicolontrue}
    \DeclareOption{frenchmath*}{\mst@frenchmathtrue\mst@italictrue
        \def\mst@ltsh{\itdefault}\mst@decimalcommatrue\mst@binarysemicolontrue}
    \DeclareOption{frenchmath+}{\mst@frenchmathtrue\mst@italictrue
        \def\mst@ltsh{\itdefault}\mst@ncccommatrue\mst@binarysemicolontrue}
newif\ifmst@endash\mst@endashtrue
    \DeclareOption{endash}{\mst@endashtrue}
    \DeclareOption{noendash}{\mst@endashfalse}
\newif\ifmst@emdash
    \DeclareOption{emdash}{\mst@emdashtrue\mst@endashfalse}
\newif \ifmst@alldelims
\edef\mst@tmp{\encodingdefault}\ifx\mst@oti\mst@tmp\else\mst@alldelimstrue\fi
    \DeclareOption{alldelims}{\mst@alldelimstrue}
    \DeclareOption{nolessnomore}{\mst@alldelimsfalse}
\newif\ifmst@nosmalldelims
    \DeclareOption{nosmalldelims}{\mst@nosmalldelimstrue}
\newif\ifmst@noplus
    \DeclareOption{noplus}{\mst@noplustrue}
\newif\ifmst@nominus
    \DeclareOption{nominus}{\mst@nominustrue}
\DeclareOption{noplusnominus}{\ExecuteOptions{noplus,nominus}}
\newif\ifmst@noparen
    \DeclareOption{noparenthesis}{\mst@noparentrue}
    \newif\ifmst@nopunct
        \DeclareOption{nopunctuation}{\mst@nopuncttrue}
    \newif\ifmst@noequal
        \DeclareOption{noequal}{\mst@noequaltrue}
    \newif\ifmst@noexclam
        \DeclareOption{noexclam}{\mst@noexclamtrue}
    \newif\ifmst@asterisk
        \DeclareOption{asterisk}{\mst@asterisktrue}
    \newif\ifmst@nospecials
        \DeclareOption{nospecials}{\mst@nospecialstrue}
    \newif\ifmst@basic
        \DeclareOption{basic}{\mst@basictrue
        \ExecuteOptions{noparenthesis,nopunctuation,%
        noplusnominus,noequal,noexclam,nospecials,nolessnomore}}
    \newif\ifmst@nohbar
        \DeclareOption{nohbar}{\mst@nohbartrue}
    1.4 adds option activedigits.
\newif\ifmst@activedigits
```

```
127 \DeclareOption{activedigits}{\mst@activedigitstrue}
128\newif\ifmst@nodigits
    \DeclareOption{nodigits}{\mst@nodigitstrue}
    \newif\ifmst@defaultimath
        \DeclareOption{defaultimath}{\mst@defaultimathtrue}
    1.4b adds option noletters.
    \newif\ifmst@noletters
        \DeclareOption{noletters}{\mst@noletterstrue\ExecuteOptions{nohbar,defaultimath}}
    \newif\ifmst@mathaccents
        \DeclareOption{mathaccents}{\mst@mathaccentstrue}
    \newif\ifmst@unimathaccents
        \DeclareOption{unimathaccents}{\mst@mathaccentstrue\mst@unimathaccentstrue}
    \newif\ifmst@needsymbol
    \newif\ifmst@symboldelimiters
        \DeclareOption{symboldelimiters}{\mst@needsymboltrue\mst@symboldelimiterstrue}
    \newif\ifmst@symboldigits
        \DeclareOption{symboldigits}{\mst@needsymboltrue\mst@symboldigitstrue}
    \newif\ifmst@symbolgreek
    \newif\ifmst@customgreek
        \DeclareOption{symbolgreek}{\mst@needsymboltrue\mst@symbolgreektrue
                        \mst@customgreektrue }
    \newif\ifmst@symbolre
        \DeclareOption{symbolre}{\mst@needsymboltrue\mst@symbolretrue}
    \newif\ifmst@symbolmisc
        \DeclareOption{symbolmisc}{\mst@needsymboltrue\mst@symbolmisctrue}
        \DeclareOption{symbol}{\ExecuteOptions{symbolgreek,symbolmisc,symbolre}}
        \DeclareOption{symbolmax}{\ExecuteOptions{symbol,symboldelimiters}}
    \newif\ifmst@needeuler
    \newif\ifmst@eulerdigits
        \DeclareOption{eulerdigits}{\mst@needeulertrue\mst@eulerdigitstrue}
    \newif\ifmst@eulergreek
        \DeclareOption{eulergreek}{\mst@needeulertrue\mst@eulergreektrue
                                \mst@customgreektrue }
    \newif\ifmst@selfGreek
        \DeclareOption{selfGreek}{\mst@selfGreektrue\mst@customgreektrue}
    \newif\ifmst@selfGreeks
        \DeclareOption{selfGreeks}{\mst@selfGreekstrue\mst@selfGreektrue
        \mst@customgreektrue }
    \newif\ifmst@LGRgreek
        \DeclareOption{LGRgreek}{\mst@LGRgreektrue\mst@customgreektrue}
    \newif\ifmst@LGRgreeks
        \DeclareOption{LGRgreeks}{\mst@LGRgreekstrue\mst@LGRgreektrue
                                \mst@customgreektrue}
    \newif\ifmst@greekplus
        \DeclareOption{LGRgreek+}{\ExecuteOptions{LGRgreek}\mst@greekplustrue}
        \DeclareOption{LGRgreeks+}{\ExecuteOptions{LGRgreeks}\mst@greekplustrue}
    \def\mst@greek@select{0}
    \newif\ifmst@itgreek
    \newif\ifmst@upgreek
```

175 \DeclareOption\{itgreek\}\{\mst@itgreektrue\}
176 \DeclareOption\{upgreek\}\{\mst@upgreektrue\}
177
\DeclareOption\{itGreek\}\{\def\mst@greek@select\{1\}\}
178
\DeclareOption\{upGreek\}\{\def\mst@greek@select\{2\}\}
Starting with $1.15 f$ the meaning of the 'defaultxx' options has changed. They now prevent mathastext from defining additional alphabets rather than prevent it from identifying the 'mathxx' with the new 'Mathxx'. The 'Mathnormal' and 'Mathrm' alphabet commands are always created as they are SymbolFontAlphabets.

This was again changed at $1.3 z a$. The additional alphabets are always declared, the options only prevent mapping the existing 'mathxx' to the new 'Mathxx'. This may be breaking change if people used these options because they had a need for the \Mathbf etc... names.

```
79 \newif\ifmst@defaultnormal
180 \DeclareOption{defaultnormal}{\mst@defaultnormaltrue}
181 \newif\ifmst@defaultrm
182 \DeclareOption{defaultrm}{\mst@defaultrmtrue}
183 \newif\ifmst@defaultbf
184\\DeclareOption{defaultbf}{\mst@defaultbftrue}
185 \newif\ifmst@defaultit
186 \DeclareOption{defaultit}{\mst@defaultittrue}
187\newif\ifmst@defaultsf
188 \DeclareOption{defaultsf}{\mst@defaultsftrue}
189 \newif\ifmst@defaulttt
190\\DeclareOption{defaulttt}{\mst@defaulttttrue}
```

Here and elsewhere 1.3za has removed an \ifmst@nonormalbold conditional.

```
191 \DeclareOption{defaultalphabets}{\ExecuteOptions{defaultnormal,defaultrm,%
192 defaultbf,defaultit,defaultsf,defaulttt}}
```

mathastext considers the default script and especially scriptscript sizes to be far too small, and it will modify them. An option maintains the default.

```
193 \newif\ifmst@defaultsizes
194 \DeclareOption{defaultmathsizes}{\mst@defaultsizestrue}
195 \newif \ifmst@twelve
196\\DeclareOption{12pt}{\mst@twelvetrue}
197\newif\ifmst@fouriervec
198\\DeclareOption{fouriervec}{\mst@fouriervectrue}
    1.15: the subdued option.
199 \newif\ifmst@subdued
200 \DeclareOption{subdued}{\mst@subduedtrue}
    1.4: the everymath option.
201 \newif\ifmst@everymath
202 \DeclareOption{everymath}{\mst@everymathtrue
203 \PackageWarningNoLine{mathastext}{%
204 `everymath\string' will be removed at next major release.\MessageBreak
205 Please report to the author the circumstances\MessageBreak
206 which mandated its use in the present document}%
207 }
```

1.3q: the unicode option. Thanks to Tobias BRINk for suggesting its incorporation. The parsing of \CurrentOption does not seek any robustness, it just does its job if the option is used correctly.

```
208 \def\mst@unicodeminus {2013}
209\def\mst@checkoption #1unicodeminus#2\mst@#3\mst@@
210 {\ifx\\#3\\\\PackageWarningNoLine{mathastext}
211 {Unknown option `\CurrentOption\string'}\else
212\ifx\\#2\\\def\mst@unicodeminus {2212}\else
213 \expandafter\def\expandafter\mst@unicodeminus\expandafter{\@secondoftwo#2}%
214 \fi\fi}
215\DeclareOption*%
216 {\expandafter\mst@checkoption\CurrentOption\mst@ unicodeminus\mst@\mst@@}
217\ProcessOptions\relax
```


nst@normalversionname

 \mst@boldversionnameI somehow missed realizing $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 2019-10-01 if used together with amsmath made repeated usage of \DeclareMathAccent trigger an error: https://github.com/latex3/latex2e/issues/216.

This broke usage of \backslash Mathastext macro in preamble.
1.3w works around this via \mst@DeclareMathAccent. And other changes were made in mathastext code to cope with these complications around robustness.

```
218\def\mst@DeclareMathAccent#1{\let#1\mst@undefined
219 \expandafter
220\let\csname\expandafter\@gobble\string#1\space\endcsname\mst@undefined
221 \DeclareMathAccent{#1}}
```

Helper macros to test math version names. User is not allowed to redefine via \Mathastext with optional argument or via \MTDeclareVersion the normal and bold math versions. Added at 1.3w, about 7 years late.

222 \def \mst@normalversionname\{normal\}\%
223 \def $\backslash m s t @ b o l d v e r s i o n n a m e\{b o l d\} \%$
$1.3 u$ adds this check that we are not in a subdued normal or bold math version. We do not push the \#1 out of the TeX conditionals, and anyhow there was no real need for expandable coding.

```
224\def\mst@OnlyIfNotSubdued#1{%
225 \ifmst@subdued
226 \ifx\math@version\mst@normalversionname
227 \else
228 \ifx\math@version\mst@boldversionname
229 \else
230 #1%
231 \fi
232 \fi
233 \else
234 #1%
235 \fi
236 }%
```

\exists 1.15 e 2012/10/21: math skip/glue after $\backslash e x i s t s ~ a n d ~ \ f o r a l l, ~ t h i s ~ i s ~ u s e f u l ~ w i t h ~ u p r i g h t ~ l e t t e r s ~$
\mst@exists@skip \forall
\mst@forall@skip \MTnormalexists $\backslash M T e x i s t s d o e s s k i p$ \MTnormalforall \MTforalldoesskip
in math mode. Each math version has its own user defined values for the skips, stored as macros.

The redefinitions of \exists and \forall are done only at the end of the package as the symbol option will also want to redefine these math symbols.
The subdued option (later and only for the normal and bold math version) and the italic option (here) set to zero the package default skips. With 1.2 the skips can be modified on the fly in the document, they are not necessarily set in the preamble once and for all for each math version.
$1.3 j$ adds $\backslash M T n o r m a l e x i s t s, ~ \ M T e x i s t s d o e s s k i p, ~ \ M T n o r m a l f o r a l l, ~ \ M T f o r a l l d o e s s k i p . ~$
Earlier to 1.3 j , \let $\backslash \mathrm{mst@exists@original} \mathrm{\ exists} \mathrm{was} \mathrm{done} \mathrm{at} \mathrm{End} \mathrm{of} \mathrm{Package}$, done at Begin Document, and same for \forall. We pay attention that use of \MTnormalexists etc... inside the preamble does not create self-let's.

Also subdued mode will do \MTnormalexists, \MTnormalforall (earlier than 1.3 j , it only set the muskips to Omu.) Same when using \MTversion\{normal\}, if subdued.
For some (random, legacy) reason, the handling of \exists and \forall is part of the things not included inside \everymath/\everydisplay.
$1.3 v$ The mathastext-defined \exists and \forall are created \protected. We feel this matches better with their default definition as \mathchardef tokens than dealing with LATEX2e robust macros. Besides, the coding is simpler.

```
\newmuskip\mst@exists@muskip
\newmuskip\mst@forall@muskip
\def\mst@exists@skip{1mu}
\def\mst@forall@skip{.6667mu}
ifmst@italic\ifmst@frenchmath\else
    \def\mst@exists@skip{0mu}
    \def\mst@forall@skip{0mu}
    \def\mst@prime@skip {0mu}
\i\fi
\protected\def\mst@exists{\mst@exists@original\mskip\mst@exists@muskip}
\protected\def\mst@forall{\mst@forall@original\mskip\mst@forall@muskip}
\AtBeginDocument{%
    \let\mst@exists@original\exists
    \let\mst@forall@original\forall
    \def\MTnormalexists {\let\exists\mst@exists@original }%
    \def\MTexistsdoesskip {\let\exists\mst@exists }%
    \def\MTnormalforall {\let\forall\mst@forall@original }%
    \def\MTforalldoesskip {\let\forall\mst@forall }%
```

The document body starts in the normal math version, whether or not \Mathastext command as been used in the preamble (which either re-defines the normal/bold math version or defines another one in case of optional argument), and in case of subdued option should use the standard \forall and \exists.
262 \newcommand*\MTexistsdoesskip \{\AtBeginDocument \{\MTexistsdoesskip \}\}
263 \newcommand* \backslash MTnormalforall \{\AtBeginDocument \{\MTnormalforall \}\}
\prime
\mst@prime@skip
\active@math@prime
\MTnormalprime \MTprimedoesskip
1.2 2012/12/17: math skip/glue before the \prime glyph. This is useful with the default CM glyph and upright letters (in contrast the prime from txfonts works fine with upright letters). For this we replace the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ kernel \active@math@prime with our own skip-enhanced version \mst@active@math@prime.
1.2b 2012/12/31: doing
\{\catcode`\'=\active \global\let'\mst@active@math@prime\}
is awfully wrong when the right quote is made active at begin document by some other package (as happens with babel for some languages). So mathastext treats now the right quote with the same method as applied to the other characters it makes mathematically active. This uses the macro \mst@mathactivate which is defined later in the package.

Babel does \let\prim@s\bbl@prim@s when ' is made active via its services (the czech and slovak languages also store the initial version of \prim@s, else the quote would not work correctly when being again of catcode 12), and it doesn't matter if mathastext is loaded before or after this happens, as the \mst@mathactivate does its job only as part of the \everymath and \everydisplay token lists.
1.2 e being paranoid, we take precautions against a possibly catcode active right quote at the time of loading mathastext.
$1.3 i$ adds $\backslash M T a c t i v e p r i m e$.
$1.3 j$ renames it to $\backslash M T p r i m e d o e s s k i p$. Besides, it makes use in the preamble of $\backslash M T n o r m a l-$ prime or \MTprimedoesskip.
1.4 adds the support for the new "non-everymath" implementation, which has to satisfy to very different constraints.
The \MTprimedoesskip is not a no-op in subdued math version. This is legacy situation, not changed at 1.4.

265 \newmuskip\mst@prime@muskip
$266 \backslash d e f \backslash m s t @ p r i m e @ s k i p\{.5 m u\}$
267 \ifmst@italic\ifmst@frenchmath\else\def\mst@prime@skip\{0mu\}\fi\fi
Shouldn't I have rather hacked \prim@s? (answer: perhaps related to Babel see a comment above).
TODO: clarify why I used \sp not ^ in \mst@active@math@prime in 2012/2013.
TODO: clarify why I am paranoid regarding the ' catcode here.
The everymath branch was initially superficially refactored at 1.4 , but unfortunately as \mst@mathactivate had been modified to not handle mathematically active characters, this meant that the mathastext feature of extra math skip was lost under the everymath option, due to an oversight by the author. For this among other reasons having mainly to do with code comments we did 1.4a.
 out the already mathematically active characters.
Why am I paranoid here about ' catcode at package loading time? (this looks ridiculous...).

```
268\def\mst@tmp#1{%
269 \def\mst@mathactivateprime{%
270 \ifnum\catcode`#1=\active
271 \@ifundefined{active@char#1}
272 {}
273 {\mst@do@activecase #1{}{\mst@active@math@prime}}%
274 \else
```

```
275 \mst@@mathactivate #1{}{\mst@active@math@prime}%
276 \fi
277 }%
The "undo" is needed at 1.4 (but not if everymath).
278\def\mst@undo@mathactivateprime{\mst@mathdeactivate#1{"8000}}%
279 }\expandafter\mst@tmp\string'
280 \def\mst@active@math@prime{\sp\bgroup\mskip\mst@prime@muskip\prim@s}
\ifmst@everymath
\newcommand*\MTnormalprime {\let\mst@modifyprime\@empty}
283 \newcommand*\MTprimedoesskip{\let\mst@modifyprime\mst@mathactivateprime}%
284 \AtBeginDocument{%
285 \everymath\expandafter
286 {\the\everymath \mst@modifyprime \MTnormalprime}%
287 \everydisplay\expandafter
288 {\the\everydisplay \mst@modifyprime \MTnormalprime}%
```

MEMO: subdued case will do its own \MTnormalprime at \begin\{document\} later as part of } $\backslash M T e v e r y m a t h o f f$.
289 \MTprimedoesskip
290 \}

291 \else
1.4 must do things a bit differently.

292 \newcommand*\MTnormalprime \{\mst@undo@mathactivateprime\}
293 \newcommand*\MTprimedoesskip\{\mst@mathactivateprime\}
MEMO: subdued case will do its own \MTnormalprime at \begin\{document\} later as part of } \MTeverymathoff.
$294 \backslash$ AtBeginDocument $\{\backslash$ MTprimedoesskip\}
295 \fi
\MTexistsskip $\backslash M T f o r a l l$ skip \MTprimeskip
1.15e: These user macros set up the amount of muglue after \exists or \forall. The normal and bold math versions inherit the same skips; these skips are set to zero in case of the subdued, or the italic option. Each command \backslash Mathastext [\langle version_name \rangle] stores the current values in the definition of the math version.
1.2: \MTprimeskip added, the silly \@onlypreamble are removed and the macros are modified to have immediate effect in the document, independently of their possible use in the preamble for the math versions to store values.

Note (september 2013): the names were badly chosen; \MTsetprimeskipto for example would have been a better choice.

```
296 \newcommand*\MTexistsskip[1]{\edef\mst@exists@skip{#1}%
297 \mst@exists@muskip\mst@exists@skip\relax}
298 \newcommand*\MTforallskip[1]{\edef\mst@forall@skip{#1}%
299 \mst@forall@muskip\mst@forall@skip\relax}
300 \newcommand*\MTprimeskip[1]{\edef\mst@prime@skip{#1}%
301 \mst@prime@muskip\mst@prime@skip\relax}
302 \let\Mathastextexistsskip\MTexistsskip
303 \let\Mathastextforallskip\MTforallskip
304 \let\Mathastextprimeskip\MTprimeskip
305\let\mathastextexistsskip\MTexistsskip
```

```
306 \let\mathastextforallskip\MTforallskip
307\let\mathastextprimeskip\MTprimeskip
```

\resetMathstrut@ 2012/12/31: The amsmath macro \resetMathstrut@ is not compatible with a mathematically active opening parenthesis: it does
\mathchardef \@tempa\mathcode`
(\relax
and is made a part of the hook \every@math@size inside \glb@settings. This is called from \check@mathfonts which is done in particular in \frozen@everymath, hence before (but wait) what mathastext puts in \everymath. Also, \glb@settings is triggered by \mathversion which must be done outside of math mode.

Alas, with things such as \$...\hbox\{...\$..\$..\}... \$ mathastext will have already made the parenthesis (mathematically) active. And \boldsymbol from amsbsy disables the \@nomath switch and executes \mathversion\{bold\} directly in math mode. So we have a problem with \resetMathstrut@.
lualatex-math replaces \resetMathstrut@ with its own version (which also looks at)) and no error is signaled when mathastext has done \mathcode` ($=$ " 8000 , but the \Mathstrutbox@ created by mathastext is then wrong.

The replacement macro avoids a potentially math active (. It assumes that there is still some appropriate glyph in slot 40 of operators and it sets the height and depth of \Mathstrutbox@ to be large enough to accomodate both this glyph and the one from the mathastext font (both in the current math version). If option noparenthesis was used, we leave everything untouched.

In $1.3 \mathrm{a}, 2013 / 09 / 04$, the modification is done only at the time of \backslash MTnonlettersobeymathxx. It is canceled by \MTnonlettersdonotobeymathxx. So the code has been moved to these macros and here we just store at the begin document the then meaning of \resetMathstrut@, and check also if \MTnonlettersobeymathxx has been invoked in the preamble.
$1.3 f 2015 / 09 / 12$ issues only an Info message not a Warning, as I am becoming aware from another context (etoc) that Warnings are stressful to users, in some integrated environments for editing and compiling $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source files.
1.4 adds here an \AtEndOfPackage. As this must be executed (if not in the legacy everymath context) after the redefinition of \MTnonlettersobeymathxx which happens at begin document.

```
308 \ifmst@noparen\else
309 \AtEndOfPackage{%
    \AtBeginDocument{%
        \@ifundefined{resetMathstrut@}
                {}%
313 {%
314 \let\mst@savedresetMathstrut@\resetMathstrut@
```

The \ifx\mst@the\the is true iff \MTnonlettersobeymathxx was used in preamble (last compared to \MTnonlettersdonotobeymathxx). Setting \mst@the to \@gobble here wiil cause \MTnonlettersobeymathxx to indeed modify \resetMathstrut@ (and it resets \mst@the to \the for its behavior in \everymath).

```
315 \ifx\mst@the\the
    \let\mst@the\@gobble
    \MTnonlettersobeymathxx
        \i
}%
    }%
321 }%
322\fi
```

1.2 2012／12／20 does some rather daring math activation of ；，：！？＋＝＜＞（ ）［ ］ in math mode to achieve something I wanted to do since a long time：overcome the mutually excluding relation between the variable－family concept and the automatic spacing concept．After loading mathastext，these characters now obey the math alphabets commands but still have the automatic spacing．The use as delimiters for those concerned is also ok．

The activation is done via setting the \mathcode to＂ 8000 through the macro \mst＠mathactivate which in turn is put into the \everymath and \everydisplay token lists．No character is made active in the sense of the \catcode（the issues with catcode active characters at the entrance of the math mode are discussed later），
but the concerned characters will now expand in math mode to two tokens．
1．2c 2012／12／31：hence，this current implementation puts constraints on the input：$\$ x^{\wedge}$ ？$\$$ or $\$ x \backslash$ mathrel？$y \$$ now create errors．They must be input $\$ x \wedge\{?\} \$$ ，respectively $\$ x \backslash$ mathrel $\{?\} y \$$ ． The disactivating macro \MTnonlettersdonotobeymathxx is made the default．
The mechanism is（even more）off by default for $\backslash\{$ and $\backslash\}$ as this is not compatible with their use as delimiters（\lbrace and \rbrace should be used instead）but it can be activated for them too．

1．2b 2012／12／30：there were bad oversights in the 1.2 code for $\backslash m s t @ m a t h a c t i v a t e ~ r e l a t e d ~$ to the possibility for some characters to have been made active（in the sense of the catcode） elsewhere（something which often is done by language definition files of the babel system）．The code from v1．2b tried to provide correct behavior using a prefix called \mst＠fork（its definition and its use has since been modified）which let the active character expand to the mathastext re－definition only in math mode and only if \protect was \＠typeset＠protect．This indeed took care of situations such as $\$ \backslash$ hbox\｛？\} $\$$ with an active ？or $\$ \backslash$ label\｛eq： 1$\} \$$ with an active ： （assuming for the latter that things would have worked ok before the twiddling by mathastext）．

1．2e 2013／01／09：alas $\$ \backslash$ ref $\{$ eq： 1$\} \$$ still was a problem．Indeed in that case the mathastext prefix had no means to know it was inside a \ref so it made the character expand to its mathastext redefinition，which is not acceptable inside a \csname．．．\endcsname．What happens with Babel is that it patches things such as \ref，\newlabel，．．．we can test the \if＠safe＠actives flag to detect it in that case，but this is Babel specific．After having thought hard about this I see no general solution except patching all macros such as \ref．．．（in an im－ itation of what Babel does）．So the final decision is to not do anything when the character is catcode active except it it seems that Babel is behind the scenes．

Incidently，Babel and TikZ are buggy with characters which are mathcode actives．For example the combination of［french］\｛babel\} and mathtools with its centercolon turns $\$: \$$ into an infinite loop ！！
In the case of Babel the reason is that，generally（but not always，the right quote ${ }^{\prime}$ is an ex－ ception），the \normal＠char〈char〉 fall－back is \string〈char〉．But this is wrong if the mathcode is 32768 ！The fall－back becomes the default if the user switches to a language where \langle char \rangle is ＇normal＇and then an infinite loop arises．

As a further example（I am not familiar with other languages from the Babel system）with frenchb the active ！？；：expand in math mode to \string！or ？or ；or ：．This creates an infinite loop if the mathcode is 32768 ．

For the special case of the right quote＇when it is made active by Babel，its fall－back does not invoke \string＇so being still of mathcode 32768 is not a problem．

I have posted online how Babel should possibly modify its definitions and I use this here．I simplify a bit my proposed replacement of \normal＠char〈char〉 as the check for \protect is superfluous，I think，having been done already at the level of the Babel prefix．

Replacing \user＠active〈char〉 is indeed not enough，and \normal＠char〈char〉 also must be
changed，because when the user switches back to a language where the character is＇normal＇it remains catcode active．The crucial thing is the test of \if＠safe＠actives in the replacement of the \normal＠char〈char〉，besides of course the test for math mode in both replacements．

When the character is not catcode active，then mathastext uses the math activation method． As the mathcode is not looked at in \edef，\write or inside \csname．．．\endcsname nothing special needs to be done，I think，in terms of protection against premature expansion．（I did not know that initially）．

So，to recapitulate，mathastext will use the mechanism of the active mathcode if the char－ acter is not catcode active，and in the opposite case will do something only in the context of Babel，modifying directly its \user＠active〈char〉 and its \normal＠char〈char〉 macros and it does NOT then set the mathcode to $32768!$ ！，rather it makes sure the character is not math－ ematically active．

As 1.2 e is a bit paranoid it takes precautions against the possibility of characters it treats being active at the time of its loading．Excepted from the scope of the paranoia are the latin letters（that would be crazy！）and also＊，＂and the left quote ${ }^{`}$ ．
$1.2 f$ 2013／01／21 with earlier versions（＊）it was important not to do twice the business of \mst＠mathactivate（think \＄${ }^{\text {hbox }\{\$? \$\} \$ \text { ），so I used（this was a bit wasteful）some sort of }}$ boolean macro for each character．But now that there are the \mst＠the．．prefixes，let＇s just use them！（don＇t know why I did not think of that earlier；perhaps I had in mind some more general character per character customization initially，which I just dropped．）
$\left.{ }^{*}\right)$ it is still important to not do twice the thing when the character is active，in which case the babel macros are patched．
As an aside，$\$ \backslash$ hbox\｛ \backslash catcode ${ }^{`}$ ？＝\active $\$$ ？$\left.\$\right\} \$$ for an ？which was unactive at the first $\$$ will just make mathastext overwrite the definition（assumed here to have been done earlier）of an active ？，but the result is that the inner ？can not be used in \label or \ref．So testing for active characters should be done always．．．many things should be done always．．．I leave as is．

1．3i 2016／01／06 removes a spurious end of line space in \mst＠mathactivate（did not show as anyhow done in math mode）．
1.4 has significantly refactored the coding，there were simplication from a changed way to use \mst＠mathactivate for letters and added branches to accomodate the renouncement to \everymath．

Called by \mst＠mathactivate if \＃1 is catcode active．
Check if token activation originates apparently into babel：
－if NO，nothing is done．The active meaning of \＃1 is not modified．
－if YES，we hook into babel associated macros so that in math mode the catcode active token does what mathastext expects it to do．Its \mathcode is set to the one of the associated \mathalpha symbol as declared by mathastext，except for asterisk and right tick which simply use their ascii number as mathcode．
In the case of babel－spanish which has a catcode active right tick，resetting its mathcode has the advantage to reveal in output the case of a faulty input using the curly right tick $\mathrm{U}+8217$ which one can get easily from copy paste，for example from the babel－spanish．pdf file．

And in general it is dangerous to have a character both catcode active and mathcode active． Some auxiliaries．
323 \def \mst＠magic＠v \＃1\＃2\＃3\＃4\＃5\｛\＃1\＃3\＃4\}
324 \def $\backslash \mathrm{mst}$＠magic＠vi \＃1\＃2\＃3\＃4\＃5\＃6\｛\＃1\＃2\＃4\＃5\}
325 \def \mst＠fork\｛\ifmmode\mst＠magic＠v\fi\＠thirdofthree\}
$326 \backslash$ def \mst＠safefork\｛\ifmmode\if＠safe＠actives\else\mst＠magic＠vi\fi\fi\＠thirdofthree\}

Some refactoring (and streamlining) at 1.4 here. There was at some point in the case of a Babelactive token a special hanlding for \#1 to use \MTmathcharletter\#1 (and event for digits!). But this is almost impossible to arise in practice:

- Babel commands to set up a shorthand are preamble only (they use \AtBeginDocument),
- A shorthand is made active at begin document, and we don't want that for a letter!
- Activation is recorded as an instruction in the .aux file which breaks it almost surely (except perhaps for letter Z or such not likely to appear in macro names in the .aux file).
- Even if we somehow hack against that (which I did to test) a more subtle problem arises that Babel updates \nfss@catcodes, so that the latter will want to make (e.g.) a of catcode 12! This causes breakage very easily at the time of \process@table almost as easily as with the a set to be an active character...
\#1 here is a character token of catcode 11 or 12 . We do something only if the catcode activation appears to have been triggered by babel. The test has been moved earlier at 1.4.
327 \def \mst@do@activecase\#1\#2\#3\{\%
As letters and digits are impossible here, \#2 is either empty (which happens only now for asterisk and right tick) or a single token (\mathclose, \mathopen,...). When \#2 is not empty, \#3 is always a mathchar token. For safety we make sure then the mathcode is not active.

The rationale is to avoid context where people have both catcode and math active and use \string. In the case of babel-spanish with activeacute option it allows to reveal more easily input errors using curly right tick $\mathrm{U}+8217$.

Arguably I probably mainly wanted to do this if the character was found catcode active but not a Babel shorthand. But it ended into the Babel branch and the non-Babel branch for active catcode is to do nothing.
\#2 is empty exactly for the case of the right tick and the asterisk. In all other cases, then \#3 is a mathchar token.

328 \ifx\relax \#2\relax\mathcode`\#1=`\#1\relax\else\mathcode`\#1=\#3\relax\fi
Less \expandafter's at 1.4. Also, it is now required to make sure:

- not do it twice in succession (else infinite loop),
- and undo it when deactivating.

This was easily done under legacy code (now only used under everymath option, and only for non-letters) as it activated only when entering into math mode.

This is more annoying when activation happens in an uncontrolled scope, and we handle this via a \mst@hackedshorthand@<char> flag.

MEMO: the undoing is done in \mst@mathdeactivate which is invoked only for those nonletters submitted to \mst@mathactivate.
329 \ifmst@everymath\else\@ifundefined\{mst@hackedshorthand@\#1\}\{\fi
330 \expandafter\let\csname mst@orig@user@active\#1\expandafter\endcsname
\csname user@active\#1\endcsname
331
332
333
\expandafter\let\csname mst@orig@normal@char\#1\expandafter\endcsname \csname normal@char\#1\endcsname
334 \ifmst@everymath\else\}\{\}\fi
No more \edef's at 1.4. At this release, in letter case \#3 is empty and \#2 is a single token which needs no extra brace pair as this brace pair will come from its expansion. We can use \{\#2\}\{\#3\} in all cases rather than either $\{\{\# 2 \# 3\}\}\}$ versus \{\#2\}\#3 depending on whether \#1 is letter or not as was done in the past. Attention that \#2 and \#3 may each be empty.
335 \def \mst@tmp\#\#1\#\#2\{\def\#\#1\{\mst@fork\{\#2\}\{\#3\}\#\#2\}\}\%
336
337

```
\expandafter\mst@tmp\csname user@active\#1\expandafter\endcsname
```

\csname mst@orig@user@active\#1 \endcsname

```
338\\def\mst@tmp##1##2{\def##1{\mst@safefork{#2}{#3}##2}}%
339
\expandafter\mst@tmp\csname normal@char#1\expandafter\endcsname
                                    \csname mst@orig@normal@char#1\endcsname
\ifmst@everymath
\else
    \expandafter\let\csname mst@hackedshorthand@#1\endcsname\@empty
\fi
345}
```

\mst@@mathactivate

```
346 \begingroup
347 \catcode`\~=\active
348 \def\x{%
349 \endgroup
```

 \#\#1 is always a token of catcode 11 or 12.
 350 \ifmst@everymath
351 \def \mst@@mathactivate\#\#1\#\#2\#\#3\{\%
352 \begingroup
353 \lccode`~=`\#\#1
354 \lccode`\#\#1=`\#\#1

Careful here as \#\#2 is empty in the asterisk and prime case. And \#\#3 also is at 1.4 empty for letters.

355 \lowercase\{\endgroup
Refactoring at 1.4 merged the catcode 11 and catcode 12 branches here and in particular avoided in former case an \edef. This helped into providing the \MTcommandletter〈letter〉 as a customizable macro. There was no equivalent to this macro, which here is \#\#2, prior to 1.4.
$356 \backslash$ ไmathcode`\#\#1="8000 357 \def~\{\#\#2\#\#3\}\% 358 \}\% 359 \}\% 360 \else 361 \def\mst@@mathactivate\#\#1\#\#2\#\#3\{\% 362 \begingroup 363 \lccode`~=`\#\#1 364 \lccode`\#\#1=`\#\#1 365 \lowercase\{\endgroup 366 \mathcode`\#\#1="8000
 for example) or at begin document. Hence this modifies globally the active meaning. So we add some safeguard here using an \ifmmode. And we store the original meaning of the active variant of the token to reset it when "undoing".

Careful not to do it twice in a row... (but this means \mst@deactivate might not revert to a user custom redefinition done in-between but to a prior one; although if the character is made active the second \mst@mathactivate would not have been done).
367 \@ifundefined\{mst@prioractivemeaning@\#\#1\}
368
$\{\backslash$ expandafter \backslash let
369 \csname mst@prioractivemeaning@\#\#1 \endcsname ~\}

370
371 372 373 374 \fi
375 \} $\backslash x$
At 1.4 the macro was split into two, to test first whether the character which is encountered is currently with active catcode.

At 1.4 the non-catcode active branch is entered only if the character isn't mathematically active at time of use..

Careful that \#2 and \#3 may each be empty. The test for being a Babel shorthand is done here and not as prior to mathastext @release1.4 inside \mst@do@activecase.

```
376 \def\mst@mathactivate#1#2#3{%
377 \ifnum\catcode`#1=\active
378
379
380
381
382}
```

This is needed at 1.4 for non-letters which are mathematically activated. See comments above in \mst@do@activecase. Works in sync with \mst@addtodo@nonletters.
 a previously existing active meaning if it has been changed.

```
383 \ifmst@everymath
384 \else
385\def\mst@mathdeactivate#1#2{%
386 \mathcode`#1=#2\relax
387 \@ifundefined{active@char#1}
388 {\@ifundefined{mst@prioractivemeaning@#1}
389 {}%
                                    {\mst@restoreactivemeaning#1%
                                    \expandafter\let\csname mst@prioractivemeaning@#1\endcsname\relax}%
            }
            {\@ifundefined{mst@hackedshorthand@#1}
                    {}
                    {\expandafter\let\csname user@active#1\expandafter\endcsname
                                    \csname mst@orig@user@active#1\endcsname
                    \expandafter\let\csname normal@char#1\expandafter\endcsname
                                    \csname mst@orig@normal@char#1\endcsname
                    \expandafter\let\csname mst@hackedshorthand@#1\endcsname\relax
                    }%
            }%
402 }%
```

@restoreactivemeaning At 1.4 when we undo the mathematical activation we now also restore the prior existing active meaning, if any. Only in the "no everymath" branch (because in the everymath $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ itself takes care of that on exiting the scope of the math mode).

```
403\def\mst@restoreactivemeaning#1{%
4 0 4 \ \text { \begingroup}
405 \lccode`~=`#1
406 \lccode`#1=`#1
407 \lowercase{\endgroup
4 0 8
409 }%
410}
411 \fi
```

\mst@do@nonletters st@addtodo@nonletters
\mst@the Tnonlettersobeymathxx ettersdonotobeymathxx

These macros are modified in version 1.3a 2013/09/04 in order to cleverly adjust, or not, the amsmath \resetMathstrut@. When used in the preamble, they just modify \mst@the. And there is code at begin document to check the status there of \mst@the and if its meaning is \the, then \MTnonlettersobeymathxx is activated again to do the patch. When used in the body they adjust \resetMathstrut@.

Notice that the saved meaning is the one at begin document (thus, possibly patched by lualatex-math - not anymore since 1.5 of March 2016, as amsmath. sty now maintained by LaTeX team has modified \resetMathStrut@ to make it compatible to Unicode engines) but modifications done after that would not be seen in \mst@savedresetMathstrut@.

The new version of \resetMathStrut@ from LaTeX team release 2016/03/03 v2.15a of amsmath.sty is still not compatible with a math active opening parenthesis. Hence my patch here is still needed.

At $1.3 \mathrm{u} \backslash$ MTnonlettersobeymathxx and \MTeasynonlettersobeymathxx are made no-ops under subdued mode. This fixes some bug if for example the former was used in preamble or immediately after \begin\{document\} making the minus sign math active although the mathastext } action was supposedly subdued. Similarly \MTmathactiveletters is now a no-op if issued under subdued mode in the normal or bold math versions.

```
412\newtoks\mst@do@nonletters
413 \ifmst@everymath
414\else
415 \newtoks\mst@undo@nonletters
416 \fi
```

\#1 is a category 12 character, \#2 is a \mathopen, or \mathclose, etc..., \#3 is a \mathchar (of variable family type).
At 1.4, \mst@mathactivate will not do anything if \#1 is mathcode active (but not catcode active) at time of use.

```
17 \ifmst@everymath
\(418 \backslash\) def \(\backslash m s t @ a d d t o d o @ n o n l e t t e r s \# 1 \# 2 \# 3\{\backslash m s t @ d o @ n o n l e t t e r s \backslash e x p a n d a f t e r\)
419 \{\the\mst@do@nonletters\mst@mathactivate\#1\#2\#3\}\%
420 \}\%
421 \else
```

We need to automatize some safeguards related to \mst@do@activecase when deactivating.
\}\%

```
428\fi
429 \let\mst@the\@gobble
As \mst@savedresetMathstrut@ will only be defined at begin document, the next two macros
are no-op in the preamble.
430 \def\mst@redefine@resetMathstrut@{%
431 \@ifundefined{mst@savedresetMathstrut@}
432 {}
433 {%
434 \ifmst@symboldelimiters
435 \def\resetMathstrut@{%
436 \setbox\z@\hbox{\the\textfont\symmtpsymbol\char40
                                    \the\textfont\symmtoperatorfont\char40
                                    \the\textfont\symoperators\char40}%
                    \ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@}%
            \else
                \def\resetMathstrut@{%
                    \setbox\z@\hbox{\the\textfont\symmtoperatorfont\char40
                                    \the\textfont\symoperators\char40}%
                    \ht\Mathstrutbox@\ht\z@ \dp\Mathstrutbox@\dp\z@}%
            \fi
            \PackageInfo{mathastext}{\string\resetMathstrut@\space
            from amsmath replaced for this\MessageBreak group or environment}%
        }%
    }%
    \def\mst@restore@resetMathstrut@{%
            \@ifundefined{mst@savedresetMathstrut@}{}{%
            \PackageInfo{mathastext}{restoring for this group or environment
                                    the original\MessageBreak
                                    amsmath \protect\resetMathstrut@}%
            \let\resetMathstrut@\mst@savedresetMathstrut@}%
    }%
    ifmst@everymath
        \newcommand*\MTnonlettersobeymathxx{%
            \mst@OnlyIfNotSubdued{%
                    \ifx\mst@the\the
                    \else
                            \mst@redefine@resetMathstrut@
            \i
            \let\mst@the\the
            }%
    }%
    \newcommand*\MTnonlettersdonotobeymathxx{%
            \ifx\mst@the\@gobble
            \else
                \mst@restore@resetMathstrut@
            \fi
            \let\mst@the\@gobble
        }%
474 \else
```

```
\newcommand*\MTnonlettersobeymathxx{%
    \mst@OnlyIfNotSubdued{%
            \AtBeginDocument{\MTnonlettersobeymathxx}%
    }%
    }%
    \newcommand*\MTnonlettersdonotobeymathxx{%
        \AtBeginDocument{\MTnonlettersdonotobeymathxx}%
    }%
    \AtBeginDocument{%
        \renewcommand*\MTnonlettersobeymathxx{%
            \mst@OnlyIfNotSubdued{%
                        \the\mst@do@nonletters
                    \ifx\mst@the\the
                    \else
                            \mst@redefine@resetMathstrut@
                    \fi
                    \let\mst@the\the
            }%
    }%
    \renewcommand*\MTnonlettersdonotobeymathxx{%
        \the\mst@undo@nonletters
        \ifx\mst@the\@gobble
        \else
                \mst@restore@resetMathstrut@
            \fi
            \let\mst@the\@gobble
        }%
        }%
503\fi
ynonlettersobeymathxx
ettersdonotobeymathxx
504 \newtoks\mst@do@easynonletters
505 \ifmst@everymath
    506 \newcommand*\MTeasynonlettersdonotobeymathxx{\let\mst@theeasy\@gobble}%
    507 \newcommand*\MTeasynonlettersobeymathxx{%
    508 \mst@OnlyIfNotSubdued{\let\mst@theeasy\the}%
    509 }%
    510 \MTeasynonlettersobeymathxx
    511\else
    512\newtoks\mst@undo@easynonletters
    513 \newcommand*\MTeasynonlettersdonotobeymathxx{\the\mst@undo@easynonletters}
    514 \newcommand*\MTeasynonlettersobeymathxx{%
                            \mst@OnlyIfNotSubdued{\the\mst@do@easynonletters}%
        }%
        \AtEndOfPackage{\MTeasynonlettersobeymathxx}%
    518\fi
ddtodo@easynonletters #1 is a one character control sequence (\., \/, \#, \% or \&) and #2 is a mathchar.
    Perhaps I should use the Unicode engine \Umathcode et alia. I do this at other places. However
I realized in 2013 and it is still true in 2024 that IATEX interface \DeclareSymbolFont does not
```

allow to declare more than 16 font families even with Lua $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ despite the latter allowing 256 such.

So why bother?
1.4 adds to this legacy branch a test to not override a mathematically active "easy" non-letter. Main case is the dot with Babel Spanish.

```
519 \ifmst@everymath
520\\def\mst@addtodo@easynonletters#1#2{%
521 \mst@do@easynonletters\expandafter{%
522 \the\mst@do@easynonletters
523\mst@OnlyIfNotMathActive{#1}{\mathcode`#1=#2}%
524 }%
525 }%
526 \def\mst@addtodo@easynonletters@u#1#2{%
527 \mst@do@easynonletters\expandafter{%
528 \the\mst@do@easynonletters
529 \mst@OnlyIfNotMathActive{#1}{\mst@Umathcodenum`#1=#2}%
530 }%
531 }%
532\else
```

The character may have been made mathcode active exterior to mathastext. We can not test this for sure at begin document as it may happen later. If such an "easy" character is mathcode active, this can not originate in mathastext. So we should not overwrite when we issue \backslash MTeasynonlettersdonotobeymathxx. Example I know is with babel Spanish which makes the dot math active. With PDFLATEX it is also catcode active

This macro may be used with Unicoe engines, and $L_{u a T} \mathrm{~F}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ differ regarding math active characters. I have only tested this (anew) for 1.4 for which this branch is needed, so in 2024.

```
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
```


\newmcodes@ \mst@newmcodes@ \MTresetnewmcodes MTcustomizenewmcodes
1.15d: the \newmcodes@ amsmath macro causes an error in Unicode engines as soon someone assigns a Unicode mathcode to the minus sign, and then makes a \DeclareMathOperator declaration. Furthermore it hard-codes the font family 0 as being the one to be used. Moreover just putting the concerned signs,$-:, ., \backslash, ', *$ inside braces emulates enough the behavior (although the tick will give a prime).
1.3: now tests if 'basic' option was used.
1.3d: I should re-examine the situation with \newmcodes@. In the meantime its relaxification will not be done if lualatex-math is loaded. And the whole thing is put at begin document.
1.3 m : lualatex-math 1.5 n'a pas modifié son traitement de \newmcodes@ mais par contre a supprimé le patch de \resetMathstrut@. Mais la date de release est restée à 2015/09/22 (date de 1.4a) au lieu de quelque chose comme 2016/03/13 (date pour l'annonce sur CTAN). Il faudra suivre l'évolution future de amsmath. sty maintenant assurée par D.C.
1.3n 2016/04/22: there is no more a patch of \newmcodes@ by lualatex-math 1.6 ($2016 / 04 / 16$), as amsmath $2016 / 03 / 10 \mathrm{v} 2.15 \mathrm{~b}$ has now a version compatible with LuaIATEX.

My very radical \let \backslash newmcodes $@ \backslash$ relax was only a temporary measure I adopted for lack of time on October 13, 2012, and apart from avoiding to do that in case lualatex-math was detected, I never came back... finally I handle it myself for $1.3 n$. The remaining problem of this macro (now that it does not anymore crash lualatex or vice versa) is that (also with amsmath version $2016 / 03 / 10 \mathrm{v} 2.15 \mathrm{~b}$) it hardcodes the font used. The aim of the macro is to modify the type of spacing affected to symbols ${ }^{\prime}, *, .,-, /,:$, in case they are used in operator names.

- As I don't want to monopolize a count register only for computations, let's just be mean if ε - $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ not there.
- mathastext makes (or not, depending on commands issued by the user) these characters math active (the right tick already is), which complicates recovery of former mathcode. We have mathchar type macros, but then the complication is in diverging behaviors of the engines: \numexpr\mst@varfam@minus \backslash relax works with $L_{u a T}{ }_{E} X$, not with $\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.
- the $*$ must presumably really be the non-lowered text glyph.
- for the - I hesitated but do use the hyphen in the end.
- seems I simply don't understand what the amsmath code does with \std@minus. It is used in \relbar and it escapes me why \newmcodes@ would ever want to redefine it, and more importantly why on earth it tests the mathcode of - for that? yes, \std@minus is defined (at begin document) using the mathcode of -, but what's the connexion to \newmcodes@ ?? Any way mathastext defines \relbar with \mst@minus@sign. Thus I just drop this conditional.
- things are complicated by the options such as nominus, noparenthesis.
- the \newmcodes@ macro is anyhow assuming that if a new math font is used it occupies math groups 0 and 1 !! very bad; fixing it in passing if the character has not been handled by mathastext could be envisioned, but that's not mathastext's job.
- years go by, and I remain as baffled as ever about the story of "more than 16 math families". I will not test again, but I am pretty sure that \DeclareMathSymbol does not work with more than 16 families, thus when I try to be a good boy and use \Umathcode syntax with symmtoperatorfont I am perhaps doing unnecessary efforts.
- I noticed that LuaLATEX does not apply the "TeX Ligature" (bad name) regarding the right tick APOSTROPHE being transformed into RIGHT SINGLE QUOTATION MARK in math mode, but $X_{H} \mathrm{IA}_{\mathrm{E}} \mathrm{X}$ does. From the point of view of mathastext, the behavior of $X_{H} \mathrm{HA}_{E} X$ is the coherent one. It appears that LuaLATEX use in math mode of a text font does not obey the set features.I opened a ticket at https://github.com/wspr/fontspec/ issues/238, but as usual it is hard to figure out the best place where to report font matters. This item might be obsolete - not checked (1.3q).
- Some hesitation about what to do under option symboldelimiters. I temporarily used \symmtpsymbol, except for the right quote and for the hyphen, but finally I drop that and use \symmtoperatorfont always. (after testing how it looked like).

All in all this is a great deal of trouble and I understand I postponed back in 2012! I spent some hours on this small thing, with consequent testing and for example this TeX Ligature issue with Unicode engines.

Since 1.3 v we require e-TEX extensions, so a test for \backslash numexpr has been dropped here.

```
\ifmst@basic
\else
\ifmst@XeOrLua
    \AtBeginDocument {%
    \ifx\newmcodes@\@undefined\else
    \edef\mst@newmcodes@{%
        \mst@Umathcode '\noexpand\' 0 \symmtoperatorfont 39\relax
        \ifmst@asterisk
        \mst@Umathcode `\noexpand\* 0 \symmtoperatorfont 42\relax
        \else\mathcode`\noexpand\* 42
        \i
        \ifmst@nopunct\mathcode `\noexpand\."613A \mathcode `\noexpand\: "603A
        \else
        \mst@Umathcode `\noexpand\. 6 \symmtoperatorfont 46\relax
        \mst@Umathcode `\noexpand\: 6 \symmtoperatorfont 58\relax
        \fi
        \ifmst@nominus\mathcode`\noexpand\- 45
        \else
            \mst@Umathcode `\noexpand\- 0 \symmtoperatorfont 45\relax
        \fi
        \ifmst@noparen\mathcode `\noexpand\/ 47
        \else
            \mst@Umathcode `\noexpand\/ 0 \symmtoperatorfont 47\relax
        \i
        }%
        \let\mst@originalnewmcodes@\newmcodes@
        \fi
        }%
\else
        \AtBeginDocument {%
        \ifx\newmcodes@\@undefined\else
        \edef\mst@newmcodes@{%
        \mathcode`\noexpand\' \the\numexpr\symmtoperatorfont*\@cclvi+39\relax
        \mathcode`\noexpand\*
```

```
591 \the\numexpr\ifmst@asterisk\symmtoperatorfont*\@cclvi\fi+42\relax
592
593
594
595
596
597
598
599
600
601 }%
602 \let\mst@originalnewmcodes@\newmcodes@
603 \fi
604 }%
605 \fi
606 \fi
607 \newcommand*\MTresetnewmcodes{\ifx\mst@originalnewmcodes@\undefined\else
608 \let\newmcodes@\mst@originalnewmcodes@\fi}
609 \newcommand*\MTcustomizenewmcodes{\ifx\mst@originalnewmcodes@\undefined\else
610 \let\newmcodes@\mst@newmcodes@\fi}
```

mtoperatorfont Declaration of the current default font as our math font. The characteristics of the used font can be changed by a user call to the macros \Mathastext or \Mathastextwilluse, which will be defined next. We will also make one internal call to \Mathastext to set up the normal and bold math versions, so we will also employ \SetSymbolFont later.
611 \DeclareSymbolFont\{mtoperatorfont\}\{\mst@enc\}\{\mst@fam\}\{\mst@ser\}\{\mst@opsh\}
\operator@font We modify this $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ internal variable in order for the predefined \cos, \sin, etc... to be typeset with the mathastext font. This will also work for things declared through the amsmath package command \DeclareMathOperator. The alternative would have been to redefine the 'operators' Math Symbol Font. Obviously people who expect that \operator@font will always refer to the 'operators' math font might be in for a surprise. . . well, we'll see.

```
\MTmathoperators-
    obeymathxx
\MTmathoperators-
            donot-
        obeymathxx
    1.2: rather than just replacing \symoperators by \symmtoperatorfont I add a modification
        which makes the declared operator names sensitive to the math alphabets... ouh le vilain!
612 \newcommand*{\MTmathoperatorsobeymathxx}
613{\def\operator@font{\mathgroup\ifnum\fam=\m@ne\symmtoperatorfont\else\fam\fi}}
614 \newcommand*{\MTmathoperatorsdonotobeymathxx}
615 {\def\operator@font{\mathgroup\symmtoperatorfont}}
616\MTmathoperatorsobeymathxx
```

mtletterfont At version 1.1, we add the possibility to mimick the standard behavior, that is to have italic letters and upright digits. Thanks to Tariq Perwez and Kevin Klement who asked for such a feature
617 \DeclareSymbolFont\{mtletterfont\}\{\mst@enc\}\{\mst@fam\}\{\mst@ser\}\{\mst@ltsh\}
\backslash MTfixmathfonts There is a long-standing issue https://github.com/lualatex/luaotfload/issues/204 on LuaEATEX not applying OpenType features in math mode (this impacts \url macro too, as it uses math mode.) LuaTEX has two modes for handling of OpenType fonts, the default in text being to use the node mode, and this mode is non-working in math, thus mathastext needs to
force use of base mode. Else one sees old style figures where one does not expect them, or the opposite, depending on the default font feature.

Once we know the cause, the fix is relatively easy. I will go for the \everymath way, because I don't want to dwelve at all with the details of $\mathrm{IAT}_{\mathrm{E}}$'s handling of math fonts, of size changes, of math versions etc... perhaps in the future $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ will fix the issue upstream by modifying $\backslash \mathrm{De}$ clareSymbolFont under LuaIATEX + luaotfload regime, then the present patch by mathastext will be unneeded. Naturally, here we care only about the two math fonts used by mathastext: mtoperatorfont and mtletterfont.

For the \url situation, I have posted online a patch.
Not all is resolved, as I comment online at https://github.com/lualatex/luaotfload/ issues/204\#issuecomment-216465680 that with TeX Gyre Termes for example I can not get simultaneously Old Style and Tabular Figures to work in math mode, although the font name as constructed by my patch (which is like the code below, only simpler as we only have to consider \textfont0) is the correct one. Similarly with Vollkorn: I can then not get the two features lnum and tnum to work simultaneously when specified with mode=base. It does work with mode=node but this mode "does not work in math mode."

Done for 1.3o of 2016/05/03.
$1.3 p$ renames the macro to $\backslash M T f i x m a t h f o n t s$ for public access.
1.4 intercepts also mode=harf. Cf https://tex.stackexchange.com/questions/722084/ change-number-style-with-mathastext (thanks to user691586 for bug report). The new code unconditionally replaces mode=foo by mode=base. The complications due to the output of \backslash fontname using only category 12 characters are handled in a different way than the 2016 code.
The https://github.com/latex3/fontspec/issues/525 problem causes additional complications.

Perhaps I should simply zap spaces always rather than check for quotes? Anyway this appears to work.

```
18\def\mst@fixmathfonts@#1.#2.#3.{%
\def\mst@fixmathfonts@##1##2#1=##3;##4##5\relax##6\@empty##7{%
    \ifx##3\empty\else
    \if"##1%
            \font\mst@mathfont=##1##2#1=base;##4##5\relax
        \else
            \mst@arrrrgh@fixmathfonts##1##2#1=base;##4##5#2\empty#3\relax
            \fi
            ##7=\mst@mathfont
            \i
628 }%
629\def\mst@arrrrgh@fixmathfonts##1#2##2##3#3##4\relax{%
630 \ifx##2\empty
                \font\mst@mathfont="##1"\relax
    \else
            \font\mst@mathfont="##1"#2##2##3#3\relax
        \fi
635 }%
636 }%
637\expandafter\mst@fixmathfonts@\detokenize{mode. at.pt.}%
638\def\MTfixmathfonts#1{%
639\def\MTfixmathfonts{%
640 \expandafter\mst@fixmathfonts@\fontname\textfont\symmtoperatorfont
```

```
641 \relax\relax #1=;\empty\relax\@empty{\textfont\symmtoperatorfont}%
6 4 2 ~ \ e x p a n d a f t e r \ m s t @ f i x m a t h f o n t s @ \ f o n t n a m e \ s c r i p t f o n t \ s y m m t o p e r a t o r f o n t ~
643 \relax\relax #1=;\empty\relax\@empty{\scriptfont\symmtoperatorfont}%
644 \expandafter\mst@fixmathfonts@\fontname\scriptscriptfont\symmtoperatorfont
645 \relax\relax #1=;\empty\relax\@empty{\scriptscriptfont\symmtoperatorfont}%
646 \expandafter\mst@fixmathfonts@\fontname\textfont\symmtletterfont
647 \relax\relax #1=;\empty\relax\@empty{\textfont\symmtletterfont}%
648 \expandafter\mst@fixmathfonts@\fontname\scriptfont\symmtletterfont
649 \relax\relax #1=;\empty\relax\@empty{\scriptfont\symmtletterfont}%
650 \expandafter\mst@fixmathfonts@\fontname\scriptscriptfont\symmtletterfont
651 \relax\relax #1=;\empty\relax\@empty{\scriptscriptfont\symmtletterfont}%
652 }}%
653\expandafter\MTfixmathfonts\expandafter{\detokenize{mode}}%
6 5 4 ~ \ i f m s t @ L u a T e X ~
655 \everymath\expandafter{\the\everymath\mst@fixmathfonts}%
656 \everydisplay\expandafter{\the\everydisplay\mst@fixmathfonts}%
657 \fi
658 \newcommand*\MTfixfonts{\let\mst@fixmathfonts\MTfixmathfonts}%
659 \newcommand*\MTdonotfixfonts{\let\mst@fixmathfonts\empty}%
660\MTfixfonts
```

Mathnormal
\Mathrm \Mathbf

We redefine the default normal, rm, bf, it, sf, and tt alphabets, but this will be done via $\backslash r e n e w c o m m a n d *\{\backslash m a t h r m\}\{\backslash$ Mathrm $\}$ etc... (not anymore, see comment below).
We follow the standard $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ behavior for \mathbf, which is to pick up the bold series of the roman font (digits and operator names).

We will access (if no option is passed for Greek) the \omicron via \mathnormal. But unfortunately the fourier package with the upright option does not have an upright omicron obtainable by simply typing \mathnormal\{o\}. So if fourier is loaded we use \mathrm and not \mathnormal.

Actually math alphabet macros are created robust since $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ from 2005 , so at 1.3 v 2019/09/19 I decided to modify the old mathastext approach a bit. Indeed with the old approach a \mathtt in a moving argument translates ultimately into \Mathtt but if for example the new context where it gets expanded is a subdued normal math version, this does not give the same as \mathtt would have given there. This was a bug: imagine \section $\{\$ \backslash$ mathtt $\{\mathrm{X}\} \$\}$ issued in a math version, but the TOC is done in subdued normal version; the output in TOC will often differ (fontsize being put aside) both from out it looked at the section title and from what direct usage of \mathtt in the TOC would have given. I have no strong preference between the two possibilities (to be as in section title, or to be as if \mathtt gets executed in TOC and obeys its local regime), but it is a bug if the result is still a third one. Thus I decided to follow $\mathrm{LAT}_{\mathrm{E}} 2 \mathrm{e}$ and that \mathtt had to remain \mathtt when moving.
But a math alphabet command such as \Mathtt redefines its unprotected meaning on first use as well as the one of the math version macro, hence a \letrobustmacro\mathtt \Mathtt of sorts is no good at all. I thus opted to not hack into the math $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ font support across math versions and to simply use \protected \def in place of obeying strictly $\mathrm{LA}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ robustness (except of course in the subdued math versions as there the math alphabets acquire back their original robust meanings.)
Potential breaking change at 1.3za, the defaultbf etc... options do not prevent the package declaring \Mathbf etc... commands.
1.3za defines a \Mathnormalbold and then defines \mathnormalbold in terms of it in place of
defining directly \mathnormalbold as a math alphabet. This is in relation to implementation of the LGRgreek+ option. There was some hesitation though to restrict this change to that option only or not.

```
661 \let\mst@alph@omicron\mathnormal
662\@ifpackageloaded{fourier}{\ifsloped\else\let\mst@alph@omicron\mathrm\fi}{}
663\DeclareSymbolFontAlphabet{\Mathnormal}{mtletterfont}
664 \DeclareSymbolFontAlphabet{\Mathrm}{mtoperatorfont}
665 \DeclareMathAlphabet{\Mathnormalbold}{\mst@enc}{\mst@fam}{\mst@bold}{\mst@ltsh}
666 \protected\def\mathnormalbold{\Mathnormalbold}
667 \DeclareMathAlphabet{\Mathbf}{\mst@enc}{\mst@fam}{\mst@bold}{\mst@opsh}
668 \DeclareMathAlphabet{\Mathit}{\mst@enc}{\mst@fam}{\mst@ser}{\itdefault}
669 \DeclareMathAlphabet{\Mathsf}{\mst@enc}{\sfdefault}{\mst@ser}{\mst@opsh}
670 \DeclareMathAlphabet{\Mathtt}{\mst@enc}{\ttdefault}{\mst@ser}{\mst@opsh}
```

The \mathxx macros being $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ robust, or course the meanings here are known, and «original» macros are sort of superfluous but well it works.

```
671\let\mst@original@normal\mathnormal
672 \let\mst@original@rm\mathrm
673 \let\mst@original@bf\mathbf
674 \let\mst@original@it\mathit
675 \let\mst@original@sf\mathsf
676 \let\mst@original@tt\mathtt
677\def\mst@restorealphabets{%
678 \let\mathnormal\mst@original@normal
679 \let\mathrm\mst@original@rm
680 \let\mathbf\mst@original@bf
6 8 1 \ l e t \ m a t h i t \ m s t @ o r i g i n a l @ i t ~
682 \let\mathsf\mst@original@sf
683 \let\mathtt\mst@original@tt
684 }
685\ifmst@greekplus
```

\mst@mathalph
The ${ }^{A} T_{E} X$ kernel code regarding math fonts is too complex and rigid for there to be a robust and easy way to know when one is in the argument of \mathrm or \mathbf, and the code is spread on various chapters of source2e.pdf, and the comments are often not up-to-date. So I did not try a too complex hack and decided for $1.3 z a$ to add a numeric indicator to let Greek letters react to it. It incorporates a space to be self-delimiting in an \ifcase to maintain expandability in numeric context of the to-be-defined Greek control sequences.

```
\def\mst@mathalph{-1}
\def\mst@setalphabets{%
    \protected\def
    \mathnormalbold##1{\def\mst@mathalph{4 }\Mathnormalbold{##1}\def\mst@mathalph{-1 }}%
    \ifmst@defaultnormal\else
        \protected\def
            \mathnormal##1{\def\mst@mathalph{0 }\Mathnormal{##1}\def\mst@mathalph{-1 }}%
    \fi
    \ifmst@defaultrm\else
        \protected\def
            \mathrm##1{\def\mst@mathalph{1 }\Mathrm{##1}\def\mst@mathalph{-1 }}%
```

LGRgreek
\MTgreekupdefault \MTgreekitdefault
selfGreek

```
697 \fi
698 \ifmst@defaultbf\else
699 \protected\def
700
701
702
7 0 3
\else
    \def\mst@setalphabets{%
        \ifmst@defaultnormal\else\protected\def\mathnormal{\Mathnormal}\fi
        \ifmst@defaultrm\else\protected\def\mathrm{\Mathrm}\fi
        \ifmst@defaultbf\else\protected\def\mathbf{\Mathbf}\fi
        \ifmst@defaultit\else\protected\def\mathit{\Mathit}\fi
        \ifmst@defaultsf\else\protected\def\mathsf{\Mathsf}\fi
        \ifmst@defaulttt\else\protected\def\mathtt{\Mathtt}\fi
    }
718\fi
719 \ifmst@subdued\else\mst@setalphabets\fi
\fi
\ifmst@defaultbf\else \(\backslash\) protected \(\backslash\) def \mathbf\#\#1\{\def\mst@mathalph\{2 \}\Mathbf\{\#\#1\}\def\mst@mathalph\{-1 \}\}\% \(\backslash f i\)
\ifmst@defaultit\else \(\backslash\) protected \(\backslash\) def \mathit\#\#1\{\def\mst@mathalph\{3 \}\Mathit\{\#\#1\}\def\mst@mathalph\{-1 \}\}\% \fi
\ifmst@defaultsf\else\protected\def\mathsf\{\Mathsf\}\fi
\ifmst@defaulttt\else\protected\def\mathtt\{\Mathtt\}\fi
\def \(\backslash m s t @ s e t a l p h a b e t s\{\%\) \ifmst@defaultnormal\else\protected\def \mathnormal\{\Mathnormal\}\fi \ifmst@defaultrm\else\protected\def \mathrm\{ \(\backslash\) Mathrm\}\fi \ifmst@defaultbf\else\protected\def\mathbf\{\Mathbf\}\fi \ifmst@defaultsf\else\protected\def\mathsf\{\Mathsf\}\fi \ifmst@defaulttt\else\protected\def \(\backslash\) mathtt \(\{\backslash\) Mathtt \(\} \backslash f i\) \} 8 \fi
719 \ifmst@subdued\else\mst@setalphabets\fi
```

1.14b: We can not move the \DeclareSymbolFont to the \backslash Mathastext macro because it resets the font family in *all* math versions, and some could have been defined by the user with previous calls to \Mathastext. So we have to have them here. The problem is that at this stage it is impossible to know if we really need (in the case of LGRgreek) two separate shapes for upper and lowercase, and (in the case of selfGreek) a shape distinct from the one used in mtoperatorfont. So I opted in the end for declaring possibly one too many font. To achieve more economy the only way would be to keep cumulative track of all previously declared math versions and to redeclare appropriately the LGR or self greek fonts at each call to \Mathastext (with no optional argument): a bit painful, and as I am possibly the sole user in the world of this possibility of multiple math versions with this package. Also the advantage to systematically allocate a font for the selfGreek option is that we can force the use of the OT1 encoding.

First we establish the cumulative effect of the greek related options.
1.15 c introduces some possibilities to change the shapes of Greek letters in each math versions, and even the Greek font (in LGR encoding). The commands \MTitgreek etc... will be used in-between calls to \Mathastext and re-adjust the shapes. And the command \MTgreekfont changes the Greek font family.

Note that \mst@ltsh expands to \shapedefault or \itdefault at this location.
Note added 2022/11/02: using \MTitgreek etc... once implies that from then on, for subsequent mathastext-math versions, the shape of Greek letters will not be kept in sync with the shape and lettershape version parameters, but only react to the configuration decided by these commands (and italic/frenchmath options).
Note 2022/10/29: for some time \updefault was made into up by $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ (since 2020-0202 now that I check this out). As a result this triggered Font Warnings in the log about the replacement of up by n.
$1.3 y$ refactors completely the handling of Greek letter shapes under the LGRgreek(s) options
(and only under them). Under these options we don't use one font for lowercase Greek and anotherone for uppercase Greek (some above code comments have not been updated) but one math font mtgreekit for italic Greek and one math font mtgreekup for upright Greek. What 'italic' and 'upright' mean is decided by the expansion of $\backslash M T g r e e k i t d e f a u l t ~ a n d ~ \ M T g r e e k u p d e f a u l t, ~$ which give respectively it and n per default.
If no itgreek et al. options or \MTitgreek et al. commands have been used, we need to map \mst@ltsh (which was used for lowercase Greek, except under frenchmath option) and \mst@opsh to either 'italic' or 'upright'. This is done by testing if they hold 'it' or 'sl'. If yes we map to 'italic' by setting to false an 'up' Boolean, if not we leave the 'up' Boolean to true.

In order to maintain perfect identical code for non-LGRgreek, the LGRgreek related code is simply added to previously shared constructions. The LGRgreek behavior will remain identical in most documents, but for example those who used some adventurous ' $s c$ ' for the main shape (the one used per default for operator names) need to adjust \MTgreekupdefault to be 'sc', for the math version being defined, or the default one if this is followed by usage of \Mathastext.

The new LGRgreek-specific commands \MTgreekupdefault and \MTgreekitdefault are the only ones in the package which can possibly be defined previously to loading it. (Perhaps some other macros could be also converted to being modifiable prior to loading mathastext, thus avoiding potential need to use \Mathastext at least once after loading the package; to be examined next time - which may be a long time in future!).

Unfortunately the $1.3 y$ did some internal renamings here (using @lgr@ in macro names in place of @greek@) which were not everywhere followed up, and this broke the selfGreek option. Fixed at 1.3z.

```
\providecommand*\MTgreekupdefault{n}
721 \providecommand*\MTgreekitdefault{it}
722 \newif\ifmst@greek@lower@up
723 \newif\ifmst@greek@upper@up
724 \def\mst@update@greeksh{
725 \def\mst@greek@lsh{\mst@ltsh}
726 \def\mst@greek@ush{\mst@opsh}
727 \mst@greek@lower@uptrue
728 \expandafter\in@\expanded{{\mst@ltsh.}}{it.,sl.}%
729 \ifin@\mst@greek@lower@upfalse\fi
730 \mst@greek@upper@uptrue
731 \expandafter\in@\expanded{{\mst@opsh.}}{it.,sl.}%
732 \ifin@\mst@greek@upper@upfalse\fi
733 \ifmst@itgreek
734 \def\mst@greek@1sh{\MTgreekitdefault}
735 \def\mst@greek@ush{\MTgreekitdefault}
736 \mst@greek@lower@upfalse
737 \mst@greek@upper@upfalse
738 \fi
739 \ifmst@upgreek
7 4 0
74
74
743
74
745
746
    \def\mst@greek@lsh{\MTgreekupdefault}
    \def\mst@greek@ush{\MTgreekupdefault}
                \mst@greek@lower@uptrue
                \mst@greek@upper@uptrue
    \fi
    \ifmst@frenchmath
        \ifmst@itgreek\else
```

```
747 \ifmst@upgreek\else
748 \def\mst@greek@lsh{\mst@opsh}
749 \def\mst@greek@ush{\mst@opsh}
750 \mst@greek@lower@uptrue
751 \mst@greek@upper@uptrue
752 \fi\fi
753 \fi
754 \ifcase\mst@greek@select
755
756
757
758
7 5 9
760
7 6 1
762}
763 \mst@update@greeksh
```

mtgreekup
mtgreekit
\mathgreekup
\mathgreekit
\mathgreekupbold
\mathgreekitbold

The $1.3 y$ refactoring was done in order to be able to define \backslash alphaup, etc ... control sequences (\mathchar's), as well as the italic ones. Formerly two math fonts were created but to be used respectively with lowercase or uppercase Greek. Now we have two fonts indexed by their shape, and we take advantage to create two math alphabets mapping to the two defined symbol fonts mtgreekup and mtgreekit.

$$
1.3 z a \text { adds \mathgreekupbold and \mathgreekitbold. }
$$

764 \ifmst@LGRgreek
765 \DeclareFontEncoding\{LGR\}\{\}\{\}
766 \DeclareSymbolFont\{mtgreekup\}\{LGR\}\{\mst@fam\}\{\mst@ser\}\{\MTgreekupdefault\}
767 \DeclareSymbolFont\{mtgreekit\}\{LGR\}\{\mst@fam\}\{\mst@ser\}\{\MTgreekitdefault\}
768 \DeclareSymbolFontAlphabet\{\mathgreekup\}\{mtgreekup\}
769 \DeclareSymbolFontAlphabet\{\mathgreekit\}\{mtgreekit\}
$770 \backslash$ DeclareMathAlphabet $\{\backslash$ mathgreekupbold\}\{LGR\}\{\mst@fam\}\{\mst@bold\}\{\MTgreekupdefault\}
$771 \backslash$ DeclareMathAlphabet $\{\backslash$ mathgreekitbold\}\{LGR\}\{\mst@fam\}\{\mst@bold\}\{\MTgreekitdefault\}
772 \else
mtselfGreekfont
773 \ifmst@selfGreek
$774 \backslash$ DeclareSymbolFont\{mtselfGreekfont\}\{0T1\}\{\mst@fam\}\{\mst@ser\}\{\mst@greek@ush\} 775 \fi\fi
mteulervm
\backslash MathEuler
\MathEulerBold
In case we need the Euler font, we declare it here. It will use uzeur.fd from the eulervm package
of Walter Schmidt
776 \ifmst@needeuler
777 \mst@infoline\{will use Euler font; command \string\MTEulerScale\}
778 \DeclareSymbolFont\{mteulervm\}\{U\}\{zeur\}\{m\}\{n\}
779 \DeclareSymbolFontAlphabet\{\MathEuler\}\{mteulervm\}
780 \DeclareMathAlphabet\{\MathEulerBold\}\{U\}\{zeur\}\{\mst@bold\}\{n\}
781 \fi
782 \newcommand*\MTEulerScale[1]\{\edef \backslash zeu@Scale\{\#1\}\}
783 \let \backslash MathastextEulerScale \backslash MTEulerScale
$\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2{ }_{\varepsilon}$ has a strange initial configuration where the capital Greek letters are of type mathalpha, but the lower Greek letters of type mathord, so that \mathbf does not act on them, although lowercase Greek letters and Latin letters are from the same font. This is because \mathbf is set up to be like a bold version of \mathrm, and \mathrm uses the 'operators' font, by default cmr, where there are NO lowercase greek letters. This set-up is ok for the Capital Greek letters which are together with the Latin letters in both cmmi and cmr.
The package eulervm sets the lowercase Greek letters to be of type mathalpha, the default \mathbf and \mathrm will act wierdly on them, but a \mathbold is defined which will use the bold series of the Euler roman font, it gives something coherent for Latin and Greek lowercase letters, and this is possible because the same font contains upright forms for them all.
Here in mathastext, Latin letters and Greek letters (lower and upper case) must be (generally) assumed to come from two different fonts, as a result the standard $\backslash m a t h b f$ (and $\backslash m a t h r m$) will give weird results when used for Greek letters. We could coerce \mathbf to do something reasonable (cf http://tug.org/pipermail/texhax/2011-January/016605.html) but at this time 30-01-2011 09:42:27 CET I decided I would not try to implement it here. I prefer to respect the default things.
I followed the simpler idea of the eulervm package and defineed \MathEuler and \MathEulerBold alphabet commands (the eulervm package does this only for the bold font).
mtpsymbol In case we need the Symbol font, we declare it here. The macro \psy@scale will be used to scale \backslash MathPSymbol the font (see at the very end of this file).

784 \ifmst@needsymbol
\mst@infoline\{will use Symbol font; command \string\MTSymbolScale\}
\def\psy@scale\{1\}
\DeclareSymbolFont\{mtpsymbol\}\{U\}\{psy\}\{m\}\{n\}
\DeclareSymbolFontAlphabet\{\MathPSymbol\}\{mtpsymbol\}
\backslash AtBeginDocument $\{\%$
\DeclareFontFamily\{U\}\{psy\}\{\}\%
\backslash DeclareFontShape $\{U\}\{p s y\}\{m\}\{n\}\{<->s *[\backslash p s y @ s c a l e]$ psyr\}$\}\} \%$
\}
793 \fi
794 \newcommand*\MTSymbolScale[1]\{\edef \backslash psy@scale\{\#1\}\}
795 \let $\backslash M a t h a s t e x t S y m b o l S c a l e \backslash M T S y m b o l S c a l e$
I did not choose for name \MathSymbol as this may be defined somewhere for another thing. There is no bold for the postscript Symbol font distributed with the $\mathrm{A}_{\mathrm{A}} \mathrm{F}_{\mathrm{E}} \mathrm{Z} 2_{\varepsilon}$ psnffs core package.
\backslash pmvec Definition of a poor man version of the \vec accent. Done using \protected \backslash def at 1.4.
796 \protected \backslash def \backslash pmvec\#1 1 \%
$797 \backslash$ mathord\{\stackrel\{\raisebox\{-.5ex\}\{\tiny\boldmath\$\mathord\{\rightarrow\}\$\}\}\%
798 \{\{\}\#1\}\%
799 \}\%
$800\}$
\fouriervec The glyph is taken from the Fourier font of Michel Bovani. Note: (oct 2012) I should not allocate an entire symbol font just for one glyph! But I have not given any serious thought to what one can do to simulate a math accent without doing such a wasteful thing.
801 \ifmst@fouriervec
802 \DeclareFontEncoding\{FML\}\{\}\{\}

```
803 \DeclareFontSubstitution{FML}{futm}{m}{it}
804 \DeclareSymbolFont{mathastextfourier}{FML}{futm}{m}{it}
805 \SetSymbolFont{mathastextfourier}{bold}{FML}{futm}{b}{it}
806 \mst@DeclareMathAccent{\fouriervec}{\mathord}{mathastextfourier}{"7E}
807 \fi
```

\MTencoding \MTfamily \MTseries \backslash MTshape \MTboldvariant \MTlettershape

Some public macros to modify our private internals, and we will use them also ourself.
In version 1.1 we add the possibility to have two distinct font shapes for letters and digits. So in fact we could as well have two really unrelated fonts but this is really not the spirit of the package.

Note that using these macros in the preamble allows \Mathastext to set up math versions with a given font for math mode, and at the same time not modifying the \familydefault or \romandefault etc...

At time of $1.3 z a$ I considered letting LGRgreeks and selfGreeks support \MTgreekfont and this needed a chaneg to \MTfamily here but I dropped the idea. Too wary of documentation changes.

```
808 \newcommand*\MTencoding[1]{\def\mst@enc{#1}}
809 \newcommand*\MTfamily[1]{\def\mst@fam{#1}}
810 \newcommand*\MTseries[1]{\def\mst@ser{#1}}
811 \newcommand*\MTshape[1]{\def\mst@opsh{#1}\ifmst@italic\else\def\mst@ltsh{#1}\fi}
812 \newcommand*\MTboldvariant[1]{\def\mst@bold{#1}}
813 \newcommand*\MTlettershape[1]{\def\mst@ltsh{#1}}
814\let\Mathastextencoding\MTencoding
815 \let\Mathastextfamily\MTfamily
816 \let\Mathastextseries\MTseries
817 \let\Mathastextshape\MTshape
818 \let\Mathastextboldvariant\MTboldvariant
819 \let\Mathastextlettershape\MTlettershape
```

\MTitgreek
\backslash MTupgreek
\backslash MTitGreek
\backslash MTupGreek
\MTgreekfont
1.15c: These new macros can be used in-between calls to \Mathastext. They reset the shapes for Greek letters (applies to LGRgreek(s) and selfGreek(s) options). The \MTgreekfont presupposes either LGRgreek or selfGreek (it is inoperant under LGRgreeks or selfGreeks). $\backslash M T g r e e k f o n t\{\backslash f a m i l y d e f a u l t\}$ is somewhat like using LGRgreeks or selfGreeks.

At time of 1.3za I let \MTgreekfont also have an effect under option LGRgreeks or selfGreeks, via a refactoring which also modified \MTfamily.
820 \newcommand*\MTitgreek\{\mst@itgreektrue\mst@upgreekfalse\def \mst@greek@select\{0\}\}
821 \newcommand*\MTupgreek\{\mst@upgreektrue\mst@itgreekfalse\def $\backslash m s t @ g r e e k @ s e l e c t\{0\}\}$
822 \newcommand*\MTitGreek\{\def \mst@greek@select\{1\}\}
823 \newcommand*\MTupGreek\{\def\mst@greek@select\{2\}\}
824 \let \backslash Mathastextitgreek $\backslash M T i t g r e e k ~$
825 \let \backslash Mathastextupgreek $\backslash M T u p g r e e k ~$
826 \let \backslash MathastextitGreek\MTitGreek
827 \let \backslash MathastextupGreek $\backslash M T u p G r e e k$
828 \newcommand*\MTgreekfont[1]\{\def\mst@greekfont\{\#1\}\}
829 \let \backslash Mathastextgreekfont $\backslash M T g r e e k f o n t$
At (long...) last we now change the font for the letters of the latin alphabet. In version 1.1, Latin letters have their own font (shape).
$1.2 \mathrm{~b} 2012 / 12 / 28$ now that we understand the great advantages of " 8000 we do it also for all letters a-z and A-Z to insert automatically the italic corrections. See the discussion in the user
manual．Ironically I wrote the code initially for the italic option only to realize later it was more suitable to using an upright text font in math mode！So this mathematical activation of the letters is not done if the font shape is detected to be it or sl；to bypass this the command \backslash MTicinmath is provided．
$1.2 \mathrm{e} 2013 / 01 / 10$ corrects a bad oversight of 1.2 b in \mst＠mathactivate which made the reproduction of the user manual illustrations with $\$ \mathrm{f}$＿ i ＾ $\mathrm{i} \$$ impossible．As $\backslash \mathrm{mst@mathactivate}$ was originally used also to get the non－letters obey math alphabet while maintaining the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ spacings，it added no extra braces．The braces should however be added for expansion of math active letters，in order of things like $x^{\wedge} y$ to work as expected．（the group braces do not prevent ligatures when the letters are arguments to the math alphabet commands，the added macros \mst＠itcorr and \mst＠before＠＜letter＞expanding to nothing）．

Added note 2016／01／06：it should be explicitly said that the extra \｛．．\} in \mst@mathactivate for letters end up creating \hbox＇es around each letter with its extra skips and explicit italic cor－ rection，when present．These skips are thus set at natural width and do not add any break point．

Added note at 1．4：the extra pair of braces is inserted here at \mst＠DeclareMathLetter，not at \mst＠mathactivate．
$1.32013 / 09 / 02$ extends the use of mathematically active letters to allow the user to specify muglue before and after the letter itself（see \MTsetmathskips，below）．Mathematically active letters were previously used only to add the italic correction；the math activation has now been separated and put in \MTmathactiveletters．There is also \MTmathactiveLetters to allow math activation only for the uppercase letters．To cancel the（now default，even with option italic）math activation of letters，there is \MTmathstandardletters．Version 1．3a removes some silly \string＇s from the code，which prevented to pass macros as first argument to the command．
Added note 2016／01／06：Notice that the initially \relax tokens \mst＠［before｜after］＠＜letter＞ formed with \csname．．\endcsname do not modify TeX＇s math layout：\｛\relax f f relax\} is like f （also for ligatures inside \mathrm for example）．

The code here was refactored at 1.4 and this simplified \mst＠mathactivate definition．
The \mst＠before〈letter〉 were renamed at 1.4 into \mst＠before＠〈letter〉 and are incorporated at the \mst＠DeclareMathLetter location．Formerly \mst＠〈letter〉 was only the math symbol， now \MTmathcharletter〈letter〉is used for that and $\backslash M T$ commandletter〈letter〉 is the whole thing to which the active letter expands（the definition of the active letter done by \mst＠mathactivate is done with a \def，not a \let）．
1.4 b adds noletters option．

830 \ifmst＠noletters
831 \let $\backslash M T m a t h a c t i v e l e t t e r s \backslash @ e m p t y ~$
832 \let $\backslash M T m a t h a c t i v e L e t t e r s \backslash @ e m p t y ~$
833 \let\MTmathstandardletters\＠empty
834 \else
835 \def \mst＠DeclareMathLetter\＃1\＃2\＃3\＃4\＃5\｛\％
836 \DeclareMathSymbol \｛\＃1\}\{\mathalpha\}\{mtletterfont\}\{`\#1\}\% 837 \DeclareMathSymbol \｛\＃4\}\{\mathalpha\}\{mtletterfont\}\{`\#1\}\%
838 \def\＃2\｛\｛\＃3\＃4\＃5\mst＠itcorr\}\}\%
839 \}\%
840 \＠tfor\mst＠tmp：＝abcdefghijklmnopqrstuvwxyz\do\｛\％
841 \expandafter
842 \expandafter\mst＠tmp

```
843 \csname MTcommandletter\mst@tmp\expandafter\endcsname
844 \csname mst@before@\mst@tmp\expandafter\endcsname
845 \csname MTmathcharletter\mst@tmp\expandafter\endcsname
846 \csname mst@after@\mst@tmp\endcsname
847 }%
848\ifmst@frenchmath \def\mst@font@tbu{mtoperatorfont}%
849 \else \def\mst@font@tbu{mtletterfont}%
850 \fi
51 \def\mst@DeclareMathLetter #1#2#3#4#5{%
    \DeclareMathSymbol {#1}{\mathalpha}{\mst@font@tbu}{`#1}%
    \DeclareMathSymbol {#4}{\mathalpha}{\mst@font@tbu}{`#1}%
    \def#2{{#3#4#5\mst@ITcorr}}%
}%
@tfor\mst@tmp:=ABCDEFGHIJKLMNOPQRSTUVWXYZ\do{%
    \expandafter\expandafter\expandafter\mst@DeclareMathLetter
    \expandafter\mst@tmp
                                    \csname MTcommandletter\mst@tmp\expandafter\endcsname
                                    \csname mst@before@\mst@tmp\expandafter\endcsname
                                    \csname MTmathcharletter\mst@tmp\expandafter\endcsname
                                    \csname mst@after@\mst@tmp\endcsname
863 }%
864 \def\mst@mathactivate@lowercase{%
865 \@tfor\mst@tmp:=abcdefghijklmnopqrstuvwxyz\do{%
                    \expandafter\expandafter\expandafter
                    \mst@mathactivate\expandafter\mst@tmp\csname MTcommandletter\mst@tmp\endcsname{}%
                }%
869 }%
870 \def\mst@mathactivate@uppercase{%
871 \@tfor\mst@tmp:=ABCDEFGHIJKLMNOPQRSTUVWXYZ\do{%
                    \expandafter\expandafter\expandafter
                    \mst@mathactivate\expandafter\mst@tmp\csname MTcommandletter\mst@tmp\endcsname{}%
                }%
    }%
876 \def\mst@mathdeactivate@lowercase{%
877 \@tfor\mst@tmp:=abcdefghijklmnopqrstuvwxyz\do{%
                            \expandafter\mathcode\expandafter`\mst@tmp=\csname MTmathcharletter\mst@tmp\endcsna
879 }%
880 }%
81 \def\mst@mathdeactivate@uppercase{%
882 \@tfor\mst@tmp:=ABCDEFGHIJKLMNOPQRSTUVWXYZ\do{%
883 \expandafter\mathcode\expandafter`\mst@tmp=\csname MTmathcharletter\mst@tmp\endcsna
884 }%
885 }%
We redo the definitions with some added layer (silly because will never happen in pratice that a
letter is Babel-active) related to \mst@do@activecase in babel context.
```

```
886 \ifmst@everymath
```

886 \ifmst@everymath
87\else
87\else
888 \def\mst@mathdeactivate@lowercase{%
888 \def\mst@mathdeactivate@lowercase{%
889 \@tfor\mst@tmp:=abcdefghijklmnopqrstuvwxyz\do{%

```
889 \@tfor\mst@tmp:=abcdefghijklmnopqrstuvwxyz\do{%
```

```
890
891
892
893
894
895
896
897 898 899 \}\%
\(900 \backslash f i\)
\expandafter \(\backslash\) mathcode \(\backslash\) expandafter \({ }^{`} \backslash\) mst@tmp \(=\)
\csname MTmathcharletter\mst@tmp\endcsname 3\%
\}\%
\def\mst@mathdeactivate@uppercase\{\%
\@tfor \mst@tmp:=ABCDEFGHIJKLMNOPQRSTUVWXYZXdo\{\%
\expandafter \(\backslash\) mathcode \(\backslash\) expandafter \({ }^{-} \backslash\) mst@tmp \(=\)
\csname MTmathcharletter\mst@tmp\endcsname \}\%
\}\%
```

Important changes at 1.4.
Ascii letters are math-activated at package loading time, rather than again and again each time math mode is entered. But not under subdued mode, then the activation is done as part of switching to some math version.

The ordering in this code source is a bit of a mess, and it may be too early here to execute \backslash MTmathactiveletters (I think it is fine now after some major moving around of code chunks but will not waste time checking it) so this will be postponed to end of package loading. Prior to $1.4 \backslash M T m a t h a c t i v e l e t t e r s ~ c o u l d ~ b e ~ e x e c u t e d ~ h e r e ~ a s ~ i t ~ o n l y ~ s e t ~ s o m e ~ t o g g l e ~ t o ~ b e ~ o b e y e d ~$ at every math mode entrance.
901 \def \mst@mathactivateletters\{\%
902 \mst@mathactivate@lowercase
903 \mst@mathactivate@uppercase
904 \}\%
905 \newcommand*\MTmathactiveletters\{\%
906 \mst@OnlyIfNotSubdued
907 \mst@mathactivateletters
908 \}\%
909 \AtEndOfPackage\{\MTmathactiveletters\}\%
Duplication due to some legacy reasons, do not rely on these internal macro names, beware they change at future release.

```
910\def\mst@mathactivateLetters{\mst@activate@uppercase}%
911 \newcommand*\MTmathactiveLetters{%
912 \mst@OnlyIfNotSubdued
    \mst@mathactivateLetters
914 }%
915 \newcommand*\MTmathstandardletters{%
916 \mst@mathdeactivate@lowercase
917 \mst@mathdeactivate@uppercase
918 }%
919 \fi
```

\MTicinmath \MTICinmath \MTnoicinmath \MTicalsoinmathxx
\MTmathactiveletters MTmathstandardletters
\backslash MTicinmath can also be used inside math mode, to revert an earlier \MTnoicinmath from inside the same math group.
1.3i 2016/01/06: For some reason which I have now forgotten I did until then:
\% \def\mst@itcorr\{\ifnum\fam=\m@ne\/\else\ifnum\fam=\symmtletterfont\/\fi\fi\}\% \%
hence italic corrections were also applied inside \mathnormal (for upright fonts; \mathnormalbold math alphabet was not treated like \mathnormal). I now drop this to be more in sync with the handling of the extra skips around letters. Everything gets suppressed inside all math alphabets, allowing ligatures, even for \mathnormal.

```
920 \newcommand*\MTicinmath{%
921 \MTmathactiveletters
922 \def\mst@itcorr{\ifnum\fam=\m@ne\/\fi}%
923 \let\mst@ITcorr\mst@itcorr
924}
925 \newcommand*\MTICinmath{%
926 \MTmathactiveLetters
927 \def\mst@ITcorr{\ifnum\fam=\m@ne\/\fi}%
928}
929 \newcommand*\MTnoicinmath{\let\mst@itcorr\@empty\let\mst@ITcorr\@empty}
930\newcommand*\MTnoICinmath{\let\mst@ITcorr\@empty}
931 \newcommand*\MTicalsoinmathxx{%
    \ifx\mst@itcorr\@empty\else\def\mst@itcorr{\/}\fi
    \ifx\mst@ITcorr\@empty\else\def\mst@ITcorr{\/}\fi
934}
```

\MTsetmathskips \MTunsetmathskips
1.3 2013/09/02: user level command to specify extra spaces in math mode around the letters (only the 7bit a,b,..,z and A,B,..,Z). First parameter is the letter, second is the math skip to be inserted before, and third the skip to be inserted after; for example \thickmuskip or explicitly 0.1 mu .

For this, letters are made mathematically active. This is now the package default (version 1.2 did this only in the absence of option italic, or more precisely when the font used was not of shape it or sl). But if \MTsetmathskips has not been used for that letter, the only effect of the math activation is, as in 1.2 , to add the italic correction automatically, except when the font shape is detected to be it or sl; in these latter cases, although mathematically active, the letter acts in the standard way.

The command \MTmathstandardletters turns off math activation and its effects for all letters.
Ligatures within the argument of a math alphabet command are impeached by skips; so $\backslash M T u n s e t m a t h s k i p s ~ i s ~ p r o v i d e d ~ t o ~ c a n c e l ~ t h e ~ s k i p s ~ f o r ~ o n e ~ s p e c i f i c ~ l e t t e r ~(~ f ~ f o r ~ e x a m p l e) . ~ . ~$
1.3a 2013/09/04: I strangely had \string\#1 inside \MTsetmathskips. Phobic of catcode active letters... but with \string one needs some \expandafter to use \MTsetmathskips in an \@for loop for example. It is better to allow the first argument to be a macro or anything expanding to a letter, and to not be paranoid about improbable catcode active letters (the user just has to tame them at the time of the \MTsetmathskip) so I take out these \string's.
1.3i 2016/01/06: the extra skips are suppressed for the arguments of math alphabet commands. This applies in particular for amsmath's \DeclareMathOperator.

```
935 \newcommand*\MTsetmathskips [3] {%
936 \@namedef{mst@before@#1}{\ifnum\fam=\m@ne\mskip#2\relax\fi}%
```

```
937 \@namedef{mst@after@#1}{\ifnum\fam=\m@ne\mskip#3\relax\fi}%
938}
939 \newcommand*\MTunsetmathskips[1] {%
940\\@namedef{mst@before@#1}{}%
941 \@namedef{mst@after@#1}{}%
942}
```

\mst@DeclareMathDigit
\MTmathactivedigits MTmathstandarddigits

In version 1.1, we have now separated digits from letters, so paradoxically it is less problematic to give them the mathalpha type.
1.4 had defined some no-op \MTmathstandarddigits and \MTmathactivedigits but if not under option nodigits. As they are used in \MTeverymathoff and \MTeverymathdefault though this broke the option nodigits (either with subdued or when using \MTversion).

Defining them as \empty so that $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ defensive mechanism with \newcommand works but this is sooooooo hypothetical context!
943 \let $\backslash M T m a t h a c t i v e d i g i t s \backslash e m p t y ~$
944 \let $\backslash M T m a t h s t a n d a r d d i g i t s \backslash e m p t y ~$
945 \ifmst@nodigits\else
946 \def\mst@font@tbu\{mtoperatorfont\}\%
947 \ifmst@symboldigits \def\mst@font@tbu\{mtpsymbol\}\fi
948 \ifmst@eulerdigits \def\mst@font@tbu\{mteulervm\}\fi
949 \DeclareMathSymbol\{0\}\{\mathalpha\}\{\mst@font@tbu\}\{`0\}\% 950 \DeclareMathSymbol\{1\}\{\mathalpha\}\{\mst@font@tbu\}\{`1\}\%
951 \DeclareMathSymbol\{2\}\{\mathalpha\}\{\mst@font@tbu\}\{`2\}\% 952 \DeclareMathSymbol\{3\}\{\mathalpha\}\{\mst@font@tbu\}\{`3\}\%
953 \DeclareMathSymbol\{4\}\{\mathalpha\}\{\mst@font@tbu\}\{`4\}\% 954 \DeclareMathSymbol\{5\}\{\mathalpha\}\{\mst@font@tbu\}\{`5\}\%
955 \DeclareMathSymbol\{6\}\{\mathalpha\}\{\mst@font@tbu\}\{`6\}\% 956 \DeclareMathSymbol\{7\}\{\mathalpha\}\{\mst@font@tbu\}\{`7\}\%
957 \DeclareMathSymbol\{8\}\{\mathalpha\}\{\mst@font@tbu\}\{`8\}\% 958 \DeclareMathSymbol\{9\}\{\mathalpha\}\{\mst@font@tbu\}\{`9\}\%
1.4 adds possibility of mathematically active digits.

```
\ifmst@activedigits
    \def\mst@DeclareMathDigit #1#2#3{%
            \DeclareMathSymbol{#3}{\mathalpha}{\mst@font@tbu}{`#1}%
            \def#2{#3}%
            }%
            \@tfor\mst@tmp:=0123456789\do{%
            \expandafter\expandafter\expandafter\mst@DeclareMathDigit
            \expandafter\mst@tmp
                                    \csname MTcommanddigit\romannumeral\mst@tmp\expandafter\endcsname
                                    \csname MTmathchardigit\romannumeral\mst@tmp\endcsname
            }%
            \def\mst@mathactivatedigits{%
            \@tfor\mst@tmp:=0123456789\do{%
            \expandafter\expandafter\expandafter\mst@mathactivate
            \expandafter\mst@tmp\csname MTcommanddigit\romannumeral\mst@tmp\endcsname{}%
            }%
            }%
            \def\MTmathactivedigits{\mst@OnlyIfNotSubdued\mst@mathactivatedigits}%
```

```
977 \MTmathactivedigits
978 \ifmst@everymath
979
    \def\MTmathstandarddigits{%
        \@tfor\mst@tmp:=0123456789\do{%
        \expandafter\mathcode\expandafter`\mst@tmp
                            =\csname MTmathchardigit\romannumeral\mst@tmp\endcsname
            }%
        }%
        \else
```

We inject some extra layer (silly because will never happen in pratice that a digit token is Babel-active) related to \mst@do@activecase in babel context.

```
986 \def\MTmathstandarddigits{%
    \@tfor\mst@tmp:=0123456789\do{%
    \expandafter\mathcode\expandafter`\mst@tmp
    =\csname MTmathchardigit\romannumeral\mst@tmp\endcsname
        }%
        }%
        \fi
    \fi
994\fi
```

When symboldelimiters is passed as an option, we use the Symbol font for the printable characters other than letters and digits.

```
995 \ifmst@symboldelimiters
996 \def\mst@font@tbu{mtpsymbol}%
997 \mst@endashfalse
998\mst@emdashfalse
999 \else
1000\def\mst@font@tbu{mtoperatorfont}%
1001 \fi
```

1.2 adds the tricks to let non letters/digits obey math alphabets. We have to double the definitions for easy switch on-off of the mechanism, via a token list which is put into \everymath and \everydisplay.
1002 \ifmst@noexclam\else\mst@infoline\{\string! and \string?\}\%
1003 \DeclareMathSymbol\{!\}\{\mathclose\}\{\mst@font@tbu\}\{"21\}\%
1004 \DeclareMathSymbol\{\mst@varfam@exclam\}\{\mathalpha\}\{\mst@font@tbu\}\{"21\}\%
1005 \expandafter\mst@addtodo@nonletters\string! \mathclose\mst@varfam@exclam
1006 \DeclareMathSymbol\{?\}\{\mathclose\}\{\mst@font@tbu\}\{"3F\}\%
1007 \DeclareMathSymbol\{\mst@varfam@question\}\{\mathalpha\}\{\mst@font@tbu\}\{"3F\}\%
 1009 \fi
\MTlowerast 1.12d The \ast or $*$ is defined in fontmath.ltx as a binary operator from the symbols font. \mst@doasterisk \mst@@doasterisk \MTnormalasterisk \MTactiveasterisk Usually the asterisk from the text font is in a raised position. Previous versions of mathastert did nothing with \ast but strangely defined $*$ to be the one from the text font, with type \mathalpha. The package now leaves by default both $*$ and \ast untouched, and if passed option asterisk replaces both of them with a lowered text asterisk (or the one from the Symbol font), and of type \mathbin. A trick is used to optionally get both $*$ and \ast obey the math alphabets.

The user macro \MTlowerast sets the amount of lowering to be applied to the text asterisk. 1.12e Somehow there was a big omission in 1.12d, the command \MTlowerast as described in the manual was missing!
$1.3 i$ adds $\backslash M T n o r m a l a s t e r i s k$ and $\backslash M T a c t i v e a s t e r i s k$. They do nothing if package is loaded without option asterisk.
1.4 uses \backslash protected rather than robust commands. And implements the support for the new default of not using \everymath.

The first two \newcommand* are because the commands were previously defined unconditionally anyhow, in a way making them no-op's without option asterisk. Finally using \let here with \empty with the idea of less impact on $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ internals, but losing $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ check.

```
1010\let\MTnormalasterisk\empty
1011 \let\MTactiveasterisk\empty
1012 \ifmst@asterisk\mst@infoline{asterisk: \string\ast\space and *}
1013 \ifmst@symbolmisc
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038 \newcommand*\MTlowerast[1]{\def\mst@lowerast{#1}}
1039\MTlowerast{.3\height}
```

Arguably mathastext should have used the "hard" non-letters affiliation here. Probably too late to change this in 2024... and costly in documentation time.

```
1040\mst@do@easynonletters\expandafter{%
    \the\mst@do@easynonletters\let\mst@ast\mst@varfam@ast
}%
\ifmst@everymath
    \def\mst@@doasterisk {\let\ast\mst@ast\mst@mathactivate*{}\mst@ast}%
    \def\MTnormalasterisk {\let\mst@doasterisk\relax}
```

```
1046
    \def\MTactiveasterisk {\let\mst@doasterisk\mst@@doasterisk}
    \MTactiveasterisk
    \AtBeginDocument{%
        \everymath\expandafter
                            {\the\everymath \mst@doasterisk \MTnormalasterisk }%
        \everydisplay\expandafter
                            {\the\everydisplay\mst@doasterisk \MTnormalasterisk }%
        }%
\else
    \def\MTnormalasterisk{\AtBeginDocument{\MTnormalasterisk}}
    \def\MTactiveasterisk{\AtBeginDocument{\MTactiveasterisk}}
```

For legacy reasons the responsiveness to math alphabets is made part of the handling of "easy" non letters (probably because it is on per default), and this causes me problems of internal logic and even more annoyingly of documentation. I am leaving this standing because it would be too much of a pain at this stage to document a change and it was already quite annoying to better document actual situation.
$1057 \backslash$ mst@undo@easynonletters \backslash expandafter $\{\%$
1058 \the\mst@do@easynonletters\let\mst@ast\mst@bin@ast
1059 \}\%
For legacy reasons the action of \MTactiveasterisk is not testing if in subdued mode.
MEMO: if subdued there is \MTeverymathoff added to \begin\{document\} near end of pack- } age and it will do \MTnormalasterisk.

```
1060 \AtBeginDocument{%
1061 \let\mst@orig@abd@ast\ast
1062 \edef\MTnormalasterisk{\noexpand\mst@mathdeactivate*{\the\mathcode`\*}%
    \let\noexpand\ast\noexpand\mst@orig@abd@ast}%
1063
1064 \def\MTactiveasterisk{\def\ast{\mst@ast}%
1065 \mst@mathactivate*{}\mst@ast
1066 }%
1067 \MTactiveasterisk
1068 }
1069 \fi
1070 \fi
```

(2011) I renounced to try to do things with all the various dots, they are defined in many different ways, and there is the amsmath also. Dealing with this issue would mean a lot a time for a minuscule result. Better to leave the user use the mathdots package and accept that we can not avoid the default fonts in that case. So here I just treat . (in the hope to really lessen by 1 the number of fonts embedded at the end in the PDF).
[(Dec. 2012) should I reexamine these definitive sounding remarks?]
ncccomma

$1.3 y$ of 2022/11/03 adds support for ncccomma option.

Some non-obvious hack is needed for compatibility with our home-made mechanism of nonletters obeying math alphabet commands. Alternative would have been to not load at all ncccomma (or since 1.3 zb decimalcomma) and provide the functionality purely by our own means; because here in order to support \MTnonlettersobeymathxx we are almost contrived to override quasi entirely the contents of these tiny packages.
$1.3 z b$ adds support for the decimalcomma option. This was mandatory to keep a compatibility layer with frenchmath after its 2.7 release of 2023/12/23.

Hesitation if I should also make it shadow the ncccomma option if both are used at same time, or let the older option have priority. Well, let's give priority to the new one so that one can do \backslash PassOptionsToPackage and recycle old documents compiled via \input to tell them to use the new option.

Much ado about these tiny packages!
1071 \ifmst@nopunct\else\mst@infoline\{punctuation\string: \string, \string. \string:
072 \string; and \string\colon\}
1073 \DeclareMathSymbol\{,\}\{\mathpunct\}\{\mst@font@tbu\}\{"2C\}
1074 \DeclareMathSymbol\{\mst@varfam@comma\}\{\mathalpha\}\{\mst@font@tbu\}\{"2C\}
1075 \ifmst@decimalcomma
1076 \mst@infoline\{loading package decimalomma for `smart comma\string'\}
$1077 \backslash$ RequirePackage\{decimalcomma\}[2023/12/28]\% 1.3 or later
Attention that the BREAKING CHANGE to \AtBeginDocument at October $2020 \mathrm{AT}_{\mathrm{E}} \mathrm{X}$ release means that, taking into account that mathastext already has employed some $\backslash \mathrm{AtBe}$ ginDocument prior to loading decimalcomma, any code here will be executed BEFORE the \backslash AtBeginDocument material from decimalcomma!
https://github.com/latex3/latex2e/issues/1226
So we definitely should not do here some \mathcode $\backslash,=$ " $8000 \backslash$ relax in the \backslash AtBeginDocument, and by the way I don't even recall why I had this line at some point which ended up causing me some much suffering and pain and lost sleep. It seems to have been a silly copy-paste from the ncccomma branch next, and that I started experimenting before having even re-read the code I copied pasted and whether it was needed.
decimalcomma is a rewrite of icomma and it loads the latter for which babel-french has a dectection mechanism, which as a result avoids the bad interactions with numprint plus its autolanguage option, which are mentioned below in the ncccomma branch. So we don't need here the workaround done below in the ncccomma branch. Notice though that in both cases, the 'intelligent' comma feature will be applied to the whole document, even inside those portions where the user has switched to another language such as English. This is to be expected here as nothing is done in a language specific manner, but if we wanted to do so, we might then be confronted with the babel issue mentioned next in the ncccomma branch.

```
1078 \let\mathcomma\relax
1079 \DeclareMathSymbol{\mathcomma}{\mathpunct}{\mst@font@tbu}{"2C}
```

Due to package decimalcomma internals, the hack here, which has to do with the "non letters obey math alphabets" optional mathastext feature, has to be done differently than the one we apply below for ncccomma. One can not really talk of a hack, as we basically have to redo the whole thing to insert an \aftergroup trick.
1082
1083
1084
1085
1086
1087
1088
1088
1089
1090
1091

```
```

```
1080 \def\mst@sm@rtcomma{\begingroup\@tfor\@tempa:=0123456789%
```

```
1080 \def\mst@sm@rtcomma{\begingroup\@tfor\@tempa:=0123456789%
1081 \do{\expandafter\ifx\@tempa\@let@token
1081 \do{\expandafter\ifx\@tempa\@let@token
```

 \aftergroup\mathord
    ```
                                    \aftergroup\mathord
                                    \aftergroup\@gobble
                                    \aftergroup\@gobble
                                    \@break@tfor\fi}%
                                    \@break@tfor\fi}%
                            \endgroup\mathpunct\mathcomma}
                            \endgroup\mathpunct\mathcomma}
    \mst@do@nonletters\expandafter{\the\mst@do@nonletters
    \mst@do@nonletters\expandafter{\the\mst@do@nonletters
        \let\mathcomma\mst@varfam@comma
        \let\mathcomma\mst@varfam@comma
        \let\sm@rtcomma\mst@sm@rtcomma
        \let\sm@rtcomma\mst@sm@rtcomma
        }
        }
        \ifmst@everymath
        \ifmst@everymath
        \else
```

 \else
    ```
```

1092
\edef\mst@tmp{\mathchardef\mathcomma=\the\mathcode`\,\relax}%
\mst@undo@nonletters\expandafter\expandafter\expandafter
{\expandafter\mst@tmp\the\mst@undo@nonletters}%
1094
1095 \fi
1096 \else

```

Work around some bad interaction of ncccomma, numprint with autolanguage and babel-french. See
https://github.com/latex3/babel/issues/190
for background. Some hesitation whether I should use the \noextrasfrench to work around babel-french code influencing non-French sections in the document. Update: I think the last sentence means I was hesitating at time of \(1.3 y\) whether to insert some extra code inside the \noextrasfrench.
```

1097 \ifmst@ncccomma
1098 \mst@infoline{loading package ncccomma for `smart comma\string'} 1099 \RequirePackage{ncccomma}% 1100 \AtBeginDocument {% 1101 \mathcode`\,="8000\relax
1102 \@ifpackageloaded{babel}{%
1103 \addto\noextrasfrench{\mathcode`\,="8000\relax}% 1104 \addto\extrasfrench{\mathcode`\,="8000\relax}%
1105 }{}%
1106 }
1107 \let\mathcomma\relax
1108
DeclareMathSymbol{\mathcomma}{\mathpunct}{\mst@font@tbu}{"2C}

```

Complications for compatibility with the \MTnonlettersobeymathxx mechanism. No fix done here for usage by ncccomma of \@tempb with no restoration of its meaning.
\begin{tabular}{|c|c|}
\hline 1109 & \edef\mst@NCC@comma\{\let\noexpand\@empty\mathpunct \\
\hline 1110 & \unexpanded\expandafter\{\NCC@comma\}\% \\
\hline 1111 & \let\noexpand\@empty\noexpand \empty\} \\
\hline 1112 & \mst@do@nonletters\expandafter\{\the\mst@do@nonletters \\
\hline 1113 & \let\mathcomma\mst@varfam@comma \\
\hline 1114 & \let\NCC@comma\mst@NCC@comma \\
\hline 1115 & \} \\
\hline 1116 & \ifmst@everymath \\
\hline 1117 & \else \\
\hline
\end{tabular}

Attention that ncccomma (contrarily to icomma loaded by decimalcomma has made the comma math active already when we loaded it. So we don't use \the \(\backslash\) mathcode \({ }^{`} \backslash, \backslash\) relax here.
```

1118 \edef\mst@tmp{\mathchardef\mathcomma=\the\mathcomma\relax}%
1119 \mst@undo@nonletters\expandafter\expandafter\expandafter
1120 {\expandafter\mst@tmp\the\mst@undo@nonletters}%
121 \fi
1122 \else

```

Neither option ncccomma nor decimalcomma. The 1.4 non-use of \everymath and consequences is accounted for automatically by \mst@addtodo@nonletters.
```

1123 \expandafter\mst@addtodo@nonletters\string,\mathpunct\mst@varfam@comma
1124 \fi\fi

```
math dot.

1125 \DeclareMathSymbol\{.\}\{\mathord\}\{\mst@font@tbu\}\{"2E\}
1126 \DeclareMathSymbol\{\mst@varfam@dot\}\{\mathalpha\}\{\mst@font@tbu\}\{"2E\}
1127 \mst@addtodo@easynonletters \. \mst@varfam@dot
math colon.
```

1128 \DeclareMathSymbol{:}{\mathrel}{\mst@font@tbu}{"3A}
1129 \DeclareMathSymbol{\mst@varfam@colon}{\mathalpha}{\mst@font@tbu}{"3A}
1130 \expandafter\mst@addtodo@nonletters\string:\mathrel\mst@varfam@colon
1131 \@ifpackageloaded{amsmath}

```
\colon gets defined in amsmath in terms of : with some enlarged explicit spacing. No need to intervene.
```

1132 {}

```

No amsmath, use standard punctuation spacing.
The reason for \et\colon\undefined is if some package has redefined \colon which then can not be used in \DeclareMathSymbol anymore (we shamelessly overwrite...)
\begin{tabular}{|c|c|}
\hline 1133 & \{\% \\
\hline 1134 & \let\colon\undefined \\
\hline 1135 & \DeclareMathSymbol\{\colon\}\{\mathpunct\}\{\mst@font@tbu\}\{"3A\} \\
\hline 1136 & \let\mst@colon\colon \\
\hline \multicolumn{2}{|r|}{1.3 v uses \protected for the (optional) \colon redefinition.} \\
\hline 1137 & \mst@do@nonletters\expandafter\{\% \\
\hline 1138 & \the\mst@do@nonletters \\
\hline 1139 & \protected\def \colon\{\mathpunct\{\mst@varfam@colon\}\}\% \\
\hline 1140 & \}\% \\
\hline \multicolumn{2}{|r|}{1.4 needs extras.} \\
\hline 1141 & \ifmst@everymath \\
\hline 1142 & \(\backslash \mathrm{else}\) \\
\hline 1143 & \mst@undo@nonletters\expandafter\{\% \\
\hline 1144 & \the\mst@undo@nonletters \\
\hline 1145 & \let\colon\mst@colon \\
\hline 1146 & \}\% \\
\hline 1147 & \fi \\
\hline 1148 & \} \\
\hline
\end{tabular}

Semi-colon. 1.3y adds binarysemicolon option.
```

1149 \DeclareMathSymbol{\mst@varfam@pointvirgule}{\mathalpha}{\mst@font@tbu}{"3B}
1150 \ifmst@binarysemicolon
1151 \mst@infoline{semi-colon set to be of type \string\mathbin}
1152 \DeclareMathSymbol{;}{\mathbin}{\mst@font@tbu}{"3B}
\expandafter\mst@addtodo@nonletters\string;\mathbin\mst@varfam@pointvirgule
\else
\DeclareMathSymbol{;}{\mathpunct}{\mst@font@tbu}{"3B}
\expandafter\mst@addtodo@nonletters\string;\mathpunct\mst@varfam@pointvirgule
\i
1158 \fi

```
\relbar Due to the way \(=\) and - are used by \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) in arrows, we will have to redefine \(\backslash\) Relbar and \(\backslash r e l b a r\) in order for them to preserve their original meanings.
1.15d: Oct 13, 2012. Belated amendment of the code to be compatible with Unicode engines in case someone changed the mathcode of -. However, for the time being I can do it in an easy way only for \(\mathrm{X}_{H} \mathrm{I}_{\mathrm{E}} \mathrm{X}\), not for LualA \(\mathrm{I}_{\mathrm{E}} \mathrm{X}\). Also I do my modifications to \relbar in a manner testing for the presence of amsmath.
1.3v 2019/09/19: \(\mathrm{IA}_{\mathrm{E}} \mathrm{C}\) of 2019-10-01 defines \leftarrowfill and \rightarrowfill as robust macros, so we do the same.
I need to put amsmath under surveillance to check if it decides to robustify \relbar at some point, now that the \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) team has taken over maintenance.

2019/09/16 Use \protected for \right|leftarrowfill in the non \DeclareRobustCommand branch?
```

1159\ifmst@nominus
1160 \else
1161 \ifmst@XeOrLua
1162\mst@Umathcharnumdef\mst@minus@sign=\mst@Umathcodenum`\-\relax

```

I used this prior to the new \luatexUmathcodenum, as available since TL2013:
\mathchardef\mst@minus@sign=8704\relax \% "2200
```

1163 \else
1164 \mathchardef\mst@minus@sign=\mathcode`\-\relax
1165 \fi
1166 \@ifpackageloaded{amsmath}
1167 {\def\relbar{\mathrel{\mathpalette\mathsm@sh\mst@minus@sign}}}
1168 {\DeclareRobustCommand\relbar{\mathrel{\smash\mst@minus@sign}}}
1169 \DeclareRobustCommand->fill{$\m@th\mathord{\relbar}\mkern-7mu%
1170 \cleaders\hbox{$\mkern-2mu\relbar\mkern-2mu$}\hfill
1171 \mkern-7mu\mathord->$}
1 1 7 2 \ D e c l a r e R o b u s t C o m m a n d \ l e f t a r r o w f i l l \{ \$ \ m @ t h \ m a t h o r d \ l e f t a r r o w \ m k e r n - 7 m u \%)
1173 \cleaders\hbox{$\mkern-2mu\relbar\mkern-2mu$}\hfill
1174 \mkern-7mu\mathord{\relbar}\$}
1175\fi

```
endash 1.1 2011/01/29: Producing this next piece of code was not a piece of cake for a novice like myself!
1.11 2011/02/05: Compatibility with Unicode (via use of fontspec encodings EU1 and EU2)
1.12 2011/02/07: Improved dealing of Unicode possibility.
1.14b 2011/04/02: Corrected some very irresponsible bug in the Unicode part which caused a problem when 10 or more math families have been allocated.
1.15 2012/09/24: Added AtBeginDocument to circumvent some amsmath problem with unicode engines.
1.31 2016/01/29: anticipating TL2016 fontspec's switch to TU.
1.3t 2018/08/22: fix to very ancient (2012/12/20) bug with \DeclareMathSymbol lacking last argument if encoding not T1, OT1 or LY1 when setting up math mode to use the en-dash character as minus sign (PDFTEX engine).
\mst@subduedminus 1.3t Further, new macros \mst@subduedminus and \mst@nonsubduedminus, for the good func\(\backslash\) mst@nonsubduedminus tioning of the subdued option also in case of presence of fontspec. This is the only character for which subdued option works (now) by setting the mathcode on each math version change. Indeed, a typical issue is when the Unicode EN DASH or MINUS is used, but the actual font in subdued normal math version is originally in OT1 or T1 encoding. The only reasonable way to
address this is by actually modifying the assigned mathcode at each version change. This means also that \MTversion and not \mathversion must be used for good functioning.
\(1.3 u\) improves the handling of the minus sign by letting it be compatible with math versions (and not only with the with subdued mechanism but all math versions) having varying font encodings, even possibly classic 8bit font encoding mixed with TU encoding for Unicode engines. For this it is needed to work around a feature of XeTeX/LuaLaTeX, here is original comment:
afaict it is impossible to use straightforwardly in extended mathcode assignments a control sequence as created by \Umathchardef. This is counter-intuitive and breaks expectations.

But the \(1.3 u\) mechanism with \mst@UmathchardefWorkAround@i introduced a bug which showed under option noendash (hence also symboldelimiters) with Unicode engines. Fixed at 1.3w.

1176 \let\mst@subduedminus \(\backslash\) empty
1177 \let\mst@nonsubduedminus \(\backslash e m p t y\)
1178 \def \mst@dothe@endashstuff\#1\#2\#3\{\%
1179 \edef\mst@tmp@enc\{\#3\}\%
1180 \if1\mst@OneifUniEnc
1181 \mst@Umathchardef\#1=2 \symmtoperatorfont "\mst@unicodeminus\relax
1182 \mst@Umathchardef\#2=7 \symmtoperatorfont "\mst@unicodeminus\relax
1183 \else
1184 \DeclareMathSymbol\{\#1\}\{\mathbin\}\{mtoperatorfont\}
1185 \{\csname\mst@tmp@enc\string\textendash\endcsname\}
1186 \DeclareMathSymbol\{\#2\}\{\mathalpha\}\{mtoperatorfont\}
1187 \fi
1189 \}\%
1190 \def \mst@dothe@emdashstuff\#1\#2\#3\{\%
1191 \edef\mst@tmp@enc\{\#3\}\%
1192 \if1\mst@OneifUniEnc
1193 \mst@Umathchardef\#1=2 \symmtoperatorfont "2014\relax
1194 \mst@Umathchardef\#2=7 \symmtoperatorfont "2014\relax
1195 \else
\(1196 \backslash\) DeclareMathSymbol\{\#1\}\{\mathbin\}\{mtoperatorfont\}
1197 \{\csname\mst@tmp@enc\string\textemdash\endcsname\}
1198 \DeclareMathSymbol\{\#2\}\{\mathalpha\}\{mtoperatorfont\}
1199 \fi
1201 \}\%
1202 \def \mst@dothe@hyphenstuff\#1\#2\{\%
1203 \DeclareMathSymbol\{\#1\}\{\mathbin\}\{\mst@font@tbu\}\{"2D\}\%
1204 \DeclareMathSymbol\{\#2\}\{\mathalpha\}\{\mst@font@tbu\}\{"2D\}\%
1205 \}\%
\(1206 \backslash\) def \(\backslash\) mst@varfam@minus\{\@nameuse\{mst@varfam@minus@mv\math@version\}\}\%
1207 \ifmst@nominus \else
1208 \expandafter\mst@addtodo@nonletters\string-\mathbin\mst@varfam@minus
1209 \def\mst@nonsubduedminus\{\%
\(1210 \backslash\) ledef \(\backslash\) mst@tmp@enc \(\{\backslash\) csname mst@encoding@\math@version\endcsname \(\} \%\)
```

1211 \if1\mst@OneifUniEnc
1212
1213
1214
1215
1216
1217
1218
1 2 1 9
\mst@Umathcode`\-=\expandafter \mst@UmathchardefWorkAround@i \csname mst@minus@mv\math@version\endcsname \relax \else \mathcode`\-=\@nameuse{mst@minus@mv\math@version}%
\fi
}%

```

The above works only if the \mst@minus@mv<name> was really defined via \Umathchardef. If it was defined via \DeclareMathSymbol then it is a \mathchar, not a \Umathchar. At least currently (2019). So we need to correct the definition of \(\backslash \mathrm{mst} @ n o n s u b d u e d m i n u s\).
```

1220 \ifmst@endash\else\ifmst@emdash\else
\def\mst@nonsubduedminus{%
\mathcode`\-=\@nameuse{mst@minus@mv\math@version}%
}%
\i\fi
1225 \fi
1226 \def\mst@UmathchardefWorkAround@i
1227 {\expandafter\mst@UmathchardefWorkAround@ii\meaning}%
1228 \def\mst@UmathchardefWorkAround@ii\#1"{"}%

```
\mst@hbar@mvnormal \mst@ltbar@mvnormal
\(2011 / 01 / 31\), 1.1 I decide to settle the question of the \(\backslash\) hbar. The \(\mathrm{AA}_{\mathrm{E}} \mathrm{X}\) definition is \def \hbar\{\{\mathchar' \(26 \backslash\) mkern- \(9 m u h\}\}\) and its advantage is that \(h\) is in the correct font. But of course not the macron character ( \(\backslash=, \backslash\) bar ). And anyway amsfonts uses a \DeclareMathSymbol. Also there is the kern whose length depends on cmsy ( \(18 \mathrm{mu}=1 \mathrm{em}\) and em taken from info in cmsy).
I will need an rlap adapted to math mode, and this is provided by code from Alexander R. Perlis in his TugBoat article 22 (2001), 350-352, which I found by googling rlap. (as an aside, I am only now (April 2, 2011) aware that the package mathtools provides the mathrlap etc... )
1.31 2016/01/29: anticipating TL2016 fontspec's switch to TU.
1.3u 2019/08/20: encoding (8bits) agnostic construct for hbar, using same method as for mathaccents option. I should add some way to adjust the vertical positioning.

On this occasion I replace h by \(\backslash \mathrm{mst}\) @ h because the mechanism for before and after skips does not interact well with the rlap construct.
\(1.3 v 2019 / 09 / 19\) adapts to maintain the robustness of \hbar which now applies with \(\mathrm{LA}_{\mathrm{E}} \mathrm{X}\) 2019-10-01.
1.3 w works around https://github.com/latex3/latex2e/issues/216 via \mst@DeclareMathAccent. The upstream bug affected the definition of \mst@ltbar@mvnormal and broke usage of \Mathastext in preamble.
1.3w also fixes oversight that \hbar may have been redefined via \DeclareMathSymbol by some package (e.g. amsfonts) and with \(\mathrm{LT}_{\mathrm{E}} \mathrm{X}\) 2019-10-01 this means \(\backslash\) hbar<space> is now undefined. Modifying it changed nothing to \hbar behavior in such circumstances. Finally we opt for a \protected \hbar and choose to ignore completely if there is a \hbar<space> or not. To avoid extra steps we do not undefine it if it exists, because we would need to restore it in subdued math versions.
```

1229\let\mst@subduedhbar\@empty
1230\let\mst@nonsubduedhbar\@empty

```
```

1231 \ifmst@nohbar\else
1232\def\mst@subduedhbar{\let\hbar\mst@original@hbar}%
1233
def\mst@nonsubduedhbar{\expandafter
1234 \let\expandafter\hbar\csname mst@hbar@mv\math@version\endcsname}%
1235 \fi
1236\def\mst@mathrlap{\mathpalette\mst@mathrlapinternal}
1237\def\mst@mathrlapinternal\#1\#2{\rlap{$\mathsurround=0pt#1{#2}$}}
1238 \def\mst@dothe@hbarstuff\#1\#2\#3{%
1239 \edef\mst@tmp@enc{\#3}%
1240 \if1\mst@OneifUniEnc
1241 \mst@Umathchardef\#1="7 \symmtletterfont "0127 \relax %% or 210F?
1242 \else
1243 \begingroup
1244
def\@text@composite\#\#1\@text@composite\#\#2{\#\#2}%
1245 \let\add@accent\@firstoftwo
1246 \mst@DeclareMathAccent{\#2}{\mathalpha}{mtletterfont}%
1247 \endgroup
1249 \protected\def\#1{\mst@mathrlap{\#2{\ }}\MTmathcharletterh}%
1250 \fi
1251 }%

```
1.15d: Oct 13, 2012. The \mathcode thing with \(=\) is (belatedly, sorry!) made Unicode compatible.
```

+,=,\Relbar

```
1252 \ifmst@noplus\else\mst@infoline\{\string+ and \string=\}
1253 \DeclareMathSymbol\{+\}\{\mathbin\}\{\mst@font@tbu\}\{"2B\}
1254 \DeclareMathSymbol\{\mst@varfam@plus\}\{\mathalpha\}\{\mst@font@tbu\}\{"2B\}
1255 \expandafter\mst@addtodo@nonletters\string+\mathbin\mst@varfam@plus
1256 \fi
1257 \ifmst@noequal\else
1258 \ifmst@XeOrLua
1259 \mst@Umathcharnumdef\mst@equal@sign=\mst@Umathcodenum`\=\relax
1260 \else
1261 \mathchardef \mst@equal@sign=\mathcode`\=\relax
1262 \fi
1263 \@ifpackageloaded\{amsmath\}
1264 \{\def \(\backslash\) Relbar\{\mathrel\mst@equal@sign\}\}
1265 \{\DeclareRobustCommand \(\backslash\) Relbar \(\{\backslash\) mathrel\{ \(\backslash\) mst@equal@sign\}\}\}
1266 \DeclareMathSymbol\{=\}\{\mathrel\}\{\mst@font@tbu\}\{"3D\}
1267 \DeclareMathSymbol\{\mst@varfam@equal\}\{\mathalpha\}\{\mst@font@tbu\}\{"3D\}
\nfss@catcodes 2012/12/18: Activating = (only in math mode actually) seems very bad but surprisingly works well. However I had a problem with eu2lmtt.fd which should not be loaded with an active \(=\). 2012/12/25: Since then I had switched to only math activation. And in fact the problematic \(=\) from eu2lmtt.fd end up in \csname... \endcsname and I have learnt since that \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) does not look at the mathcode inside a \csname...\endcsname. Example:
\% \mathcode`x="8000
```

% \begingroup
% \catcode`x=\active
% \global\everymath{\defx{Hello}}
% \endgroup
% \def\foox{World!}
% $x \csname foox\endcsname$
%

```

We need nevertheless to inactivate the \(=\), for the following reason. Imagine someone did \catcode`==\active\def=\{\string=\}, or another definition which would not lead to a tragedy in a \csname... \endcsname. Then the \(=\) is active and the re-definition done by mathastext will not be compatible with loading eu2lmtt.fd (for the first time) from math mode, as this re-definition can not be expanded inside a \csname... \endcsname.

2012/12/28: to be on the safe side, I add also ; and + and do it without discriminating between engines
```

1268\mst@infoline{adding \string= \string; and \string+ to \string\nfss@catcodes}
1269\g@addto@macro\nfss@catcodes{%
1270 \@makeother\=%
1271 \@makeother\;%
1272 \@makeother\+%
1273}
1274\expandafter\mst@addtodo@nonletters\string=\mathrel\mst@varfam@equal
1275\fi

```
noparenthesis
(, ), [,],/
\lbrack and \rbrack are defined in latex.ltx by \def\lbrack\{[\}\def \(\backslash\) rbrack\{]\} so this fits well with what we do here. \lparen and \rparen are similarly defined in mathtools. On the other hand in latex.ltx with \(\backslash\{\) and \(\backslash\}\) are defined (in math mode) in terms of the control sequences \lbrace and \rbrace. Such control sequences can not be simultaneously math symbols and math delimiters, thus, this complicates things for the mathastextification.
```

1276 \ifmst@noparen\else
1277\mst@infoline{parentheses \string(\string) \string[\string] and slash \string/}
1278 \ifmst@nosmalldelims
1279 \DeclareMathSymbol{(}{\mathopen}{\mst@font@tbu}{"28}
1280 \DeclareMathSymbol{)}{\mathclose}{\mst@font@tbu}{"29}
1281 \DeclareMathSymbol{[}{\mathopen} {\mst@font@tbu}{"5B}
1282 \DeclareMathSymbol{]}{\mathclose}{\mst@font@tbu}{"5D}
1283 \DeclareMathSymbol{/}{\mathord}{\mst@font@tbu}{"2F}
1284 \else
1285 \DeclareMathDelimiter{(}{\mathopen}{\mst@font@tbu}{"28}{largesymbols}{"00}
1286 \DeclareMathDelimiter{)}{\mathclose}{\mst@font@tbu}{"29}{largesymbols}{"01}
1287 \DeclareMathDelimiter{[}{\mathopen} {\mst@font@tbu}{"5B}{largesymbols}{"02}
1288 \DeclareMathDelimiter{]}{\mathclose}{\mst@font@tbu}{"5D}{largesymbols}{"03}
1289 \DeclareMathDelimiter{/}{\mathord}{\mst@font@tbu}{"2F}{largesymbols}{"OE}
1290 \fi
1291 \DeclareMathSymbol{\mst@varfam@lparen}{\mathalpha}{\mst@font@tbu}{40}
1292\DeclareMathSymbol{\mst@varfam@rparen}{\mathalpha}{\mst@font@tbu}{41}
1293 \DeclareMathSymbol{\mst@varfam@lbrack}{\mathalpha}{\mst@font@tbu}{"5B}
1294 \DeclareMathSymbol{\mst@varfam@rbrack}{\mathalpha}{\mst@font@tbu}{"5D}
1295 \DeclareMathSymbol{\mst@varfam@slash}{\mathalpha}{\mst@font@tbu}{"2F}

```

1296 \expandafter \(\backslash m s t @ a d d t o d o @ n o n l e t t e r s \backslash s t r i n g(\backslash m a t h o p e n \backslash m s t @ v a r f a m @ l p a r e n ~\)
1297 \expandafter\mst@addtodo@nonletters \string) \mathclose\mst@varfam@rparen
1298 \expandafter\mst@addtodo@nonletters \string[\mathopen\mst@varfam@lbrack
1299 \expandafter\mst@addtodo@nonletters\string] \mathclose\mst@varfam@rbrack
1300 \mst@addtodo@easynonletters \(\backslash / \backslash m s t @ v a r f a m @ s l a s h\)
1301 \fi
```

alldelims
<,>,\ 1302 \ifmst@alldelims\mst@infoline{alldelims: \string< \string>
\setminus 1303 \string\backslash\space\string\setminus\space\string|
\backslash 1304 \string\vert\space\string\mid\space\string\{\space \string\}}
1305 \ifmst@nosmalldelims

```

Dec 18, 2012. We then want \let\backslash\mst@varfam@backslash to do nothing when the \backslash is used as a delimiter. So here the original definition from latex.ltx is copied, generally speaking when people use other math symbol fonts they do respect the encoding of the CM symbols and largesymbols, so this is \(90 \%\) safe. But in truth I should extract from the meaning of \backslash the delcode.

At 1.4 I am a bit perplexed at the \mathalpha here. Adding a a \mst@mathord@backslash for matters of option noeverymath.
```

1306 \DeclareMathDelimiter{\mst@varfam@backslash}
1307 {\mathalpha}{symbols}{"6E}{largesymbols}{"0F}
1308 \let\mst@mathord@backslash\backslash
1309 \else
1310 \DeclareMathDelimiter{<}{\mathopen}{\mst@font@tbu}{"3C}{largesymbols}{"0A}
1311 \DeclareMathDelimiter{>}{\mathclose}{\mst@font@tbu}{"3E}{largesymbols}{"OB}

```

There is no backslash in the Symbol font hence mtoperatorfont here.
\begin{tabular}{|c|c|}
\hline 1312 & \DeclareMathDelimiter\{\mst@mathord@backslash\} \\
\hline 1313 & \{\mathord\}\{mtoperatorfont\}\{"5C\}\{largesymbols\}\{"0F\} \\
\hline 1314 & \let\backslash\mst@mathord@backslash \\
\hline 1315 & \DeclareMathDelimiter\{\mst@varfam@backslash\} \\
\hline 1316 & \{\mathalpha\}\{mtoperatorfont\}\{"5C\}\{largesymbols\}\{"0F\} \\
\hline \multicolumn{2}{|l|}{1317 \fi} \\
\hline \multicolumn{2}{|l|}{1318 \DeclareMathSymbol\{<\}\{\mathrel\}\{\mst@font@tbu\}\{"3C\}} \\
\hline \multicolumn{2}{|l|}{1319 \DeclareMathSymbol\{>\}\{\mathrel\}\{\mst@font@tbu\}\{"3E\}} \\
\hline \multicolumn{2}{|l|}{1320 \DeclareMathSymbol\{\mst@varfam@less\}\{\mathalpha\}\{\mst@font@tbu\}\{"3C\}} \\
\hline \multicolumn{2}{|l|}{1321 \DeclareMathSymbol\{\mst@varfam@more\}\{\mathalpha\}\{\mst@font@tbu\}\{"3E\}} \\
\hline \multicolumn{2}{|l|}{1322 \expandafter\mst@addtodo@nonletters\string<\mathrel\mst@varfam@less} \\
\hline \multicolumn{2}{|l|}{1323 \expandafter\mst@addtodo@nonletters\string>\mathrel\mst@varfam@more} \\
\hline \multicolumn{2}{|l|}{1324 \mst@do@easynonletters \expandafter\{\the\mst@do@easynonletters} \\
\hline 1325 & \let\backslash\mst@varfam@backslash\} \\
\hline
\end{tabular}

Extras for 1.4 are needed:
```

1326\ifmst@everymath
1327 \else
1328\mst@undo@easynonletters\expandafter{\the\mst@undo@easynonletters
1329 \let\backslash\mst@mathord@backslash}
1330 \fi
1331\DeclareMathSymbol{\setminus}{\mathbin}{mtoperatorfont}{"5C}
1332\let\mst@setminus\setminus

```

1333 \DeclareMathSymbol\{\mst@varfam@setminus\}\{\mathalpha\}\{mtoperatorfont\}\{"5C\}
1.3 v adds a \(\backslash\) protected here for \setminus.
```

1334\mst@do@nonletters\expandafter{%
1335 \the\mst@do@nonletters
1336 \protected\def\setminus{\mathbin{\mst@varfam@setminus}}%
1337 }

```

Extras for 1.4 are needed:
```

1338 \ifmst@everymath
1339 \else
1340 \mst@undo@nonletters\expandafter{%
1341 \the\mst@undo@nonletters
1342 \let\setminus\mst@setminus
1343 }
1344\fi

```
\models 1.15d: 13 oct 2012. Before modifying | we must preserve \models.
1345 \ifmst@XeOrLua
\(1346 \backslash\) mst@Umathcharnumdef \(\backslash\) mst@vert@bar=\mst@Umathcodenum \({ }^{-} \backslash / \backslash\) relax
1347 \else
1348 \mathchardef \(\backslash\) mst@vert@bar=\mathcode`\|\relax
1349 \fi
1350 \DeclareRobustCommand\models\{\mathrel\{\mst@vert@bar\}\joinrel\Relbar\}

I , \mid, \vert (2011) I did not do anything then to try to emulate \Vert with the vertical bar from the text font... and now (2012) mathastext is not as radical as it used to be anyhow, so it is too late. Or not (2019)? maybe I should do something here...
1.3v 2019/09/19: I discover this rather radical legacy \def \vert\{1\}, which is done here once in the preamble, but I leave it unmodified apart from prefixing it with \protected. I also add a \protected for the definition of \(\backslash\) mid (which applies only under \(\backslash\) MTnonlettersobeymathxx regime).
1351 \ifmst@nosmalldelims
\(1352 \backslash\) DeclareMathSymbol\{|\}\{\mathord\}\{\mst@font@tbu\}\{124\}
1353 \else
\(1354 \backslash\) DeclareMathDelimiter\{1\}\{\mathord\}\{\mst@font@tbu\}\{124\}\{largesymbols\}\{"0C\}
1355 \fi
1356 \protected \(\backslash\) def \(\backslash\) vert \(\{1\}\)
1357 \DeclareMathSymbol\{\mst@varfam@vbar\}\{\mathalpha\}\{\mst@font@tbu\}\{124\}
1358 \mst@addtodo@easynonletters\\\mst@varfam@vbar
1359 \let \(\backslash\) mid \(\backslash u n d e f i n e d\)
1360 \DeclareMathSymbol\{\mid\}\{\mathrel\}\{\mst@font@tbu\}\{124\}
1361 \let \(\backslash\) mst@mid \({ }^{\text {mid }}\)
1362 \mst@do@nonletters \(\backslash\) expandafter\{\%
1363 \the\mst@do@nonletters
\(1364 \backslash\) protected \(\backslash\) def \(\backslash\) mid \(\{\backslash\) mathrel \mst@varfam@vbar\}\%
1365 \}
Extras for 1.4 are needed:
1366 \ifmst@everymath
1367 \else
```

1368
\mst@undo@nonletters\expandafter{%
\the\mst@undo@nonletters
\let\mid\mst@mid
}
1372 \fi

```
\MTexplicitbracesobeymathxx
\MTexplicitbracesdonotobeymathxx

Braces. With version 1.2, \\{ and } \backslash \} \text { will not be acceptable as delimiters anymore if the redefini- } tions below in \mst@dobraces are enacted. But they will obey math alphabets. Improvements in 1.2 a , to preserve robustness.
For 1.3 I make \lbrace and \rbrace undefined first, else problems may arise with some packages.
\(1.3 e\) suppresses under option nosmalldelims the definitions of \lbrace and \rbrace as math symbols as this made \left\lbrace cause an error, it was a bug.
(obsolete) LaTeX2e defines \(\backslash\{\) and \(\backslash\}\) as robust commands since a long time (I don't know since when). The mathastext redefinition is done only if user has executed \MTexplicitbracesobeymathxx, and it is done only when entering math mode, but there could be some \hbox inside math, hence it has to be careful to be valid in text too.
1.3 v maintains strict \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}\) robustness for \(\backslash\{\) and \(\backslash\}\). This assumes no one fiddled with \(\backslash\{\) and \(\backslash\}\) proper (without space in the name).
\(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) made \(\backslash\{\) and \(\backslash\} \backslash\) protected, not robust, at its 2020-02-02 release, so the code used by mathastext under \MTexplicitbracesobeymathxx toggle remained without effect since as it configured a change to \(\backslash\{<\) space \(>\) and \(\backslash\}<\) space>. Fixed at 1.4.
```

1373 \ifmst@nosmalldelims
1374 \else
\let\lbrace\undefined \let\rbrace\undefined
\DeclareMathDelimiter{\lbrace}
{\mathopen}{\mst@font@tbu}{123}{largesymbols}{"08}
\DeclareMathDelimiter{\rbrace}
{\mathclose}{\mst@font@tbu}{125}{largesymbols}{"09}
\i

```
1381 \DeclareMathSymbol\{\mst@varfam@lbrace\}\{\mathalpha\}\{\mst@font@tbu\}\{123\}
1382 \DeclareMathSymbol\{\mst@varfam@rbrace\}\{\mathalpha\}\{\mst@font@tbu\}\{125\}
\(1383 \backslash p r o t e c t e d \backslash d e f \backslash m s t @ l b r a c e\{\backslash i f m m o d e \backslash m a t h o p e n \backslash m s t @ v a r f a m @ l b r a c e \backslash e l s e \backslash t e x t b r a c e l e f t \backslash f i\}\)
1384 \protected\def\mst@rbrace\{\ifmmode\mathclose\mst@varfam@rbrace\else\textbraceright \fi\}
1385 \mst@do@nonletters \(\backslash\) expandafter \(\{\%\)
1386 \the\mst@do@nonletters
1387 \mst@dobraces\{\let \(\backslash\{\backslash\) mst@lbrace \(\backslash\) let \(\backslash\} \backslash\) mst@rbrace \(\} \%\)
1388 \}
1389 \fi
1390 \newcommand*\{\MTexplicitbracesobeymathxx\}\{\let\mst@dobraces\@firstofone\}
1391 \newcommand*\{\MTexplicitbracesdonotobeymathxx\}\{\let \(\backslash\) mst@dobraces \(\backslash\) @gobble \(\}\)

Extras for 1.4 are needed:
```

1392 \ifmst@everymath
1393 \else
1394 %

```
```

1398 %
1407 \fi
1408 \MTexplicitbracesdonotobeymathxx

```
specials \(\quad 1.14 \mathrm{~b}\) 2011/04/02: the redefinitions of \(\#, \$, \%\) and \& were buggy (this showed up when 10 or more math families had been created).
\(1.15 f\) 2012/10/23: the code, although working, was perhaps a bit insane and had definitions which could surprise other packages. For example, it did:
\(\backslash\) renewcommand \(\{\backslash \%\}\{\backslash i f m m o d e \backslash m t @ m m o d e @ p e r c e n t \backslash e l s e \backslash c h a r 37 \backslash r e l a x \backslash f i\}\)
But it seems this provokes a problem with microtype. Perhaps the problem was that the command was not declared robust? For the dollar \(\mathrm{IA}_{\mathrm{E}} \mathrm{X}\) itself does
\DeclareRobustCommand\{\\$\}\{\ifmmode\mathdollar\else\textdollar\fi\}
So here I just modify \mathdollar. Then we have in latex.ltx the same definitions as in plain.tex: \chardef \(\backslash \%=-\backslash \%\), \chardef \(\backslash \&=` \backslash \&\), and \chardef \(\backslash \#=`\). \(\\). It turns out that we can just adjust the mathcodes of these characters and achieve exactly what is wanted for the corresponding one char control sequences. In math mode the control sequence will use the specified mathcode. So here it is not a redefinition of the control sequences, purely an adjustment of mathcodes.
1.2d 2013/01/01: previous versions imposed the variable family type. I hereby make it possible to de-activate this feature with the macro \MTeasynonlettersdonotobeymathxx. Besides, I have absolutely no idea why I had different looking code depending on the engine \(\mathrm{X}_{\mathrm{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\), LuaTEX or default. Removed.
1.3c 2013/12/14: I have absolutely no idea why I removed the \(\mathrm{X}_{\boldsymbol{H}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) and LuaT \(\mathrm{E}_{\mathrm{E}} \mathrm{Code}\) at the time of 1.2 d ! the code for tex/pdftex engine could not accomodate more than 16 math families. Code for \(\mathrm{X}_{\mathcal{H}} \mathrm{I}_{\mathrm{E}} \mathrm{X}\) and \(\mathrm{LuaT}_{\mathrm{E}} \mathrm{X}\) again added. (and since TL2013 no more problems with \luatexUmathcode.)
1.4 has done slight refactoring here to share more code related to math activation across the two branches.
```

1409 \ifmst@nospecials
1410 \else
411 \mst@infoline{\string\#\space\string\mathdollar\space
\string\%\space\string\&\space}
\ifmst@XeOrLua
\mst@Umathcode`\#=0 \symmtoperatorfont "23 \relax \mst@Umathchardef\mathdollar=0 \symmtoperatorfont "24 \relax \mst@Umathcode`\%=0 \symmtoperatorfont "25 \relax
\mst@Umathcode`\&=0 \symmtoperatorfont "26 \relax
\mst@Umathchardef\mst@varfam@mathhash = 7 \symmtoperatorfont "23 \re-
lax
1419\mst@Umathchardef\mst@varfam@mathdollar = 7 \symmtoperatorfont "24 \re-
lax

```
```

1420 \mst@Umathchardef\mst@varfam@mathpercent = 7 \symmtoperatorfont "25 \re-
lax
1421 \mst@Umathchardef\mst@varfam@mathampersand = 7 \symmtoperatorfont "26 \re-
lax
1422
\mst@addtodo@easynonletters@U\#\mst@varfam@mathhash
\mst@addtodo@easynonletters@U\%\mst@varfam@mathpercent
\mst@addtodo@easynonletters@U\&\mst@varfam@mathampersand
\else
\count@=\symmtoperatorfont
\multiply\count@ by \@cclvi
\advance\count@ by 35
\mathcode`\#\count@ \advance\count@ by \@ne \mathchardef\mathdollar\count@ \advance\count@ by \@ne \mathcode`\%\count@
\advance\count@ by \@ne
\mathcode`\&\count@
\count@=\symmtoperatorfont
\multiply\count@ by \@cclvi
\advance\count@ by 28707 % = "7023
\mathchardef\mst@varfam@mathhash\count@
\advance\count@ by \@ne
\mathchardef\mst@varfam@mathdollar\count@
\advance\count@ by \@ne
\mathchardef \mst@varfam@mathpercent\count@
\advance\count@ by \@ne
\mathchardef\mst@varfam@mathampersand\count@
\mst@addtodo@easynonletters\#\mst@varfam@mathhash
\mst@addtodo@easynonletters\%\mst@varfam@mathpercent
\mst@addtodo@easynonletters\&\mst@varfam@mathampersand
\i

```

It is possible to mathematically activate the dollar sign, and to use it in math mode as \string \(\$ . .\). well, how many documents will have done that? But we do not modify the mathcode of the \(\$\) character anyhow, so why should I add here a \mst@OnlyIfNotMathActive? There is no good reason for that.
```

1450\mst@do@easynonletters\expandafter{\the\mst@do@easynonletters
1451 \let\mathdollar\mst@varfam@mathdollar}%

```

Extras for 1.4 are needed. Here too we do not worry about math active dollar character.
1452 \ifmst@everymath\else
\(1453 \backslash\) ledef \mst@tmp\{\ifmst@XeOrLua\mst@Umathcharnumdef \else\mathchardef \(\backslash f i\)
\mathdollar=\the\mathdollar\relax\}\%
\mst@undo@easynonletters \(\backslash\) expandafter \(\backslash\) expandafter \(\backslash\) expandafter \(\{\backslash\) expandafter \(\backslash m s t @ t m p \backslash t h e \backslash m s t @ u n d o @ e a s y n o n l e t t e r s\} \%\)
1456
1457 \fi
1458 \fi
symbolmisc We construct (with some effort) some long arrows from the Symbol glyphs, of almost the same lengths as the standard ones. By the way, I always found the \iff to be too wide, but I
follow here the default. Also, although there is a \longmapsto in standard \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\), if I am not mistaken, there is no \longto. So I define one here. I could not construct in the same manner \Longrightarrow etc... as the \(=\) sign from Symbol does not combine easily with the logical arrows, well, I could have done some box manipulations, but well, life is finite.
1.13 b : I correct the brutal re-definitions of \prod and \sum from the earlier versions of the
\sum package; most of the time the Symbol glyphs do appear to be too small in display mode. The new redefinitions do have some defects: \(\$ \backslash\) displaystyle \(\backslash\) prod_ \(1^{\wedge} 2 \$\) changes the position of limits but not the glyph itself, and \(\$ \$ \backslash\) textstyle \(\backslash\) prod_1~ \(2 \$ \$\) change the limits but switches to the CM inline math glyph. So I tried
\(\backslash\) renewcommand \(\{\backslash\) prod\} \(\{\backslash\) mathchoice \(\{\backslash\) mst@prod\}\{\prodpsy\}\{\prodpsy\}\{\prodpsy\}\}
but this did not go well with subscripts and exponents.
October 2012: maybe I should re-examine what I did?
\(1.3 c(2013 / 12 / 14)\) renames \defaultprod to \MToriginalprod and \defaultsum to \MToriginalsum.
\(1.3 v\) hesitates about making robust here \prod and \sum. Finally I use \protected for them.
1.4 finally replaces all control sequences defines earlier via \DeclareRobustCommand to be defined using \protected\def. It also removes \mst@prod and \mst@sum which were aliases of \MToriginalprod and \MToriginalsum, and having both must have been some left-over of earlier versions in 2012 or 2013 (unchecked).
```

1459 \ifmst@symbolmisc
1460\mst@infoline{symbolmisc: miscellaneous math symbols from Symbol font}
1461 \let\MToriginalprod\prod
1462\DeclareMathSymbol{\prodpsy}{\mathop}{mtpsymbol}{213}
1463\protected\def\prod{\ifinner\prodpsy\else\MToriginalprod\fi}
1464\let\MToriginalsum\sum
1465\DeclareMathSymbol{\sumpsy}{\mathop}{mtpsymbol}{229}
1466\protected\def\sum{\ifinner\sumpsy\else\MToriginalsum\fi}
1467\DeclareMathSymbol{\mst@implies}{\mathrel}{mtpsymbol}{222}
1468\protected\def\implies{\;\mst@implies\;}
1469\DeclareMathSymbol{\mst@impliedby}{\mathrel}{mtpsymbol}{220}
1470\protected\def\impliedby{\;\mst@impliedby\;}
1471\protected\def\iff{\;\mst@impliedby\mathrel{\mkern-3mu}\mst@implies\;}
1472\DeclareMathSymbol{\mst@iff}{\mathrel}{mtpsymbol}{219}
1473\protected\def\shortiff{\;\mst@iff\;}
1.4 drops defining a \mst@to and employs \to in subsequent definitions
1474 \let\to\relax
1475 \DeclareMathSymbol{\to}{\mathrel}{mtpsymbol}{174}
1476 \DeclareMathSymbol{\mst@trait}{\mathrel}{mtpsymbol}{190}
1477\protected\def\longto{\mkern2mu\mst@trait\mathrel{\mkern-10mu}\to}
1478\protected\def\mapsto{\mapstochar\mathrel{\mkern0.2mu}\to}
1479 \protected\def\longmapsto{%
1480
mapstochar\mathrel{\mkern2mu}\mst@trait\mathrel{\mkern-10mu}\to
1481 }
1482 \DeclareMathSymbol{\aleph}{\mathord}{mtpsymbol}{192}
1483 \DeclareMathSymbol{\inftypsy}{\mathord}{mtpsymbol}{165}
1484 \DeclareMathSymbol{\emptyset}{\mathord}{mtpsymbol}{198}
1485\let\varnothing\emptyset
1486\DeclareMathSymbol{\nabla}{\mathord}{mtpsymbol}{209}

```
```

1487 \DeclareMathSymbol{\surd}{\mathop}{mtpsymbol}{214}
1488 \let\angle\undefined
1489 \DeclareMathSymbol{\angle}{\mathord}{mtpsymbol}{208}
1490 \DeclareMathSymbol{\forall}{\mathord}{mtpsymbol}{34}
1491 \DeclareMathSymbol{\exists}{\mathord}{mtpsymbol}{36}
1492 \DeclareMathSymbol{\neg}{\mathord}{mtpsymbol}{216}
1493 \DeclareMathSymbol{\clubsuit}{\mathord}{mtpsymbol}{167}
1494 \DeclareMathSymbol{\diamondsuit}{\mathord}{mtpsymbol}{168}
1495 \DeclareMathSymbol{\heartsuit}{\mathord}{mtpsymbol}{169}
1496 \DeclareMathSymbol{\spadesuit}{\mathord}{mtpsymbol}{170}
1497 \DeclareMathSymbol{\smallint}{\mathop}{mtpsymbol}{242}
1498 \DeclareMathSymbol{\wedge}{\mathbin}{mtpsymbol}{217}
1499 \DeclareMathSymbol{\vee}{\mathbin}{mtpsymbol}{218}
1500 \DeclareMathSymbol{\cap}{\mathbin}{mtpsymbol}{199}
1501 \DeclareMathSymbol{\cup}{\mathbin}{mtpsymbol}{200}
1502 \DeclareMathSymbol{\bullet}{\mathbin}{mtpsymbol}{183}
1503 \DeclareMathSymbol{\div}{\mathbin}{mtpsymbol}{184}
1504 \DeclareMathSymbol{\otimes}{\mathbin}{mtpsymbol}{196}
1505 \DeclareMathSymbol{\oplus}{\mathbin}{mtpsymbol}{197}
1506 \DeclareMathSymbol{\pm}{\mathbin}{mtpsymbol}{177}
1507 \DeclareMathSymbol{\times}{\mathbin}{mtpsymbol}{180}
1508 \DeclareMathSymbol{\proptopsy}{\mathrel}{mtpsymbol}{181}
1509 \DeclareMathSymbol{\mid}{\mathrel}{mtpsymbol}{124}
1510 \DeclareMathSymbol{\leq}{\mathrel}{mtpsymbol}{163}
1511 \DeclareMathSymbol{\geq}{\mathrel}{mtpsymbol}{179}
1512 \DeclareMathSymbol{\approx}{\mathrel}{mtpsymbol}{187}
1513 \DeclareMathSymbol{\supset}{\mathrel}{mtpsymbol}{201}
1514 \DeclareMathSymbol{\subset}{\mathrel}{mtpsymbol}{204}
1515 \DeclareMathSymbol{\supseteq}{\mathrel}{mtpsymbol}{202}
1516 \DeclareMathSymbol{\subseteq}{\mathrel}{mtpsymbol}{205}
1517 \DeclareMathSymbol{\in}{\mathrel}{mtpsymbol}{206}
1518 \DeclareMathSymbol{\sim}{\mathrel}{mtpsymbol}{126}
1519 \let\cong\undefined
1520 \DeclareMathSymbol{\cong}{\mathrel}{mtpsymbol}{64}
1521 \DeclareMathSymbol{\perp}{\mathrel}{mtpsymbol}{94}
1522 \DeclareMathSymbol{\equiv}{\mathrel}{mtpsymbol}{186}
1523\let\notin\undefined
1524 \DeclareMathSymbol{\notin}{\mathrel}{mtpsymbol}{207}
1525\DeclareMathDelimiter{\rangle}
1526 {\mathclose}{mtpsymbol}{241}{largesymbols}{"OB}
1527 \DeclareMathDelimiter{\langle}
1528 {\mathopen}{mtpsymbol}{225}{largesymbols}{"OA}
1529 \fi

```
symbolre I like the \Re and \Im from Symbol, so I overwrite the CM ones.
1530 \ifmst@symbolre
1531 \mst@infoline\{symbolre: \string \(\backslash\) Re\space and \string\Im\space from Symbol font\}
1532 \DeclareMathSymbol \(\{\backslash\) Re\} \(\{\backslash\) mathord\} \{mtpsymbol\}\{"C2\}
1533 \DeclareMathSymbol\{\Im\}\{\mathord\}\{mtpsymbol\}\{"C1\}

1534 \DeclareMathSymbol\{\DotTriangle\}\{\mathord\}\{mtpsymbol\}\{92\}
1535 \fi
Greek letters LGRgreek > selfGreek > eulergreek > symbolgreek
1.11 I correct some bugs on how eulergreek and symbolgreek interacted.
1.12 b more bug fixes.
1.13
* Option LGRgreek.
* Also, a behavior has been changed: it regards the selfGreek case, the default shape is now the one for letters, not for operator-names and digits. This complies to the ISO standard.
* bugfix: version 1.12b did not define the \omicron in the case when no Greek-related option was passed to the package.
1.13d has new macros \MTstandardgreek and \MTcustomgreek. And in the subdued case \(\backslash M T s t a n d a r d g r e e k\) is done when switching to the normal or bold math versions (previously something like this was only done in case of LGRgreek option. )
```

1536 \let\mst@mathord\mathalpha
1537 \mst@goaheadtrue
1538 \ifmst@selfGreek
1539
ef\mst@font@tbu{mtselfGreekfont}
1540 \else
1541 \ifmst@eulergreek
1542 \def\mst@font@tbu{mteulervm}
1543 \else
1544 \ifmst@symbolgreek
1545
def\mst@font@tbu{mtpsymbol}
1546 \let\mst@mathord\mathord
1547 \else
1548 \ifmst@LGRgreek
1549 \mst@goaheadfalse
1550 \else

```

The \omicron requires special treatment. By default we use the o from the (original) normal alphabet, if eulergreek or symbolgreek we adapt. There is also a special adjustment if the package fourier was loaded in its upright variant: we then take \omicron from the (original) rm alphabet.
```

1551 \mst@goaheadfalse
1552 \def\mst@omicron {\mst@alph@omicron{o}}
1553 \fi
1554 \fi
1555 \fi
1556 \fi
1557 \ifmst@goahead
1558 \DeclareMathSymbol{\mst@Alpha}{\mst@mathord}{\mst@font@tbu}{"41}
1559 \DeclareMathSymbol{\mst@Beta}{\mst@mathord}{\mst@font@tbu}{"42}
1560 \DeclareMathSymbol{\mst@Epsilon}{\mst@mathord}{\mst@font@tbu}{"45}
1561 \DeclareMathSymbol{\mst@Zeta}{\mst@mathord}{\mst@font@tbu}{"5A}
1562 \DeclareMathSymbol{\mst@Eta}{\mst@mathord}{\mst@font@tbu}{"48}
1563 \DeclareMathSymbol{\mst@Iota}{\mst@mathord}{\mst@font@tbu}{"49}
1564 \DeclareMathSymbol{\mst@Kappa}{\mst@mathord}{\mst@font@tbu}{"4B}
1565 \DeclareMathSymbol{\mst@Mu}{\mst@mathord}{\mst@font@tbu}{"4D}

```
```

1566 \DeclareMathSymbol{\mst@Nu}{\mst@mathord}{\mst@font@tbu}{"4E}
1567 \DeclareMathSymbol{\mst@Omicron}{\mst@mathord}{\mst@font@tbu}{"4F}
1568 \DeclareMathSymbol{\mst@Rho}{\mst@mathord}{\mst@font@tbu}{"50}
1569 \DeclareMathSymbol{\mst@Tau}{\mst@mathord}{\mst@font@tbu}{"54}
1570 \DeclareMathSymbol{\mst@Chi}{\mst@mathord}{\mst@font@tbu}{"58}

```

When we in fact use Symbol, we have to correct \Rho and \Chi. And \Digamma is non-existent in fact (no F in Symbol, F codes a \(\backslash \mathrm{Phi}\) ).

\section*{1571 \ifx\mst@mathord\mathord}
symbolgreek but neither eulergreek nor selfGreek
Attention le P de Symbol est un \Pi pas un \Rho.
Attention le X de Symbol est un \Xi pas un \Chi.
Attention le F de Symbol est un \Phi. Il n'y a pas de \Digamma.
```

1572 \DeclareMathSymbol{\mst@Rho}{\mathord}{mtpsymbol}{"52}
1573 \DeclareMathSymbol{\mst@Chi}{\mathord}{mtpsymbol}{"43}
1574 \DeclareMathSymbol{\mst@Gamma}{\mathord}{mtpsymbol}{"47}
1575 \DeclareMathSymbol{\mst@Delta}{\mathord}{mtpsymbol}{"44}
1576 \DeclareMathSymbol{\mst@Theta}{\mathord}{mtpsymbol}{"51}
1577 \DeclareMathSymbol{\mst@Lambda}{\mathord}{mtpsymbol}{"4C}
1578 \DeclareMathSymbol{\mst@Xi}{\mathord}{mtpsymbol}{"58}
1579 \DeclareMathSymbol{\mst@Pi}{\mathord}{mtpsymbol}{"50}
1580 \DeclareMathSymbol{\mst@Sigma}{\mathord}{mtpsymbol}{"53}
1581 \DeclareMathSymbol{\mst@Upsilon}{\mathord}{mtpsymbol}{"A1}
1582 \DeclareMathSymbol{\mst@Phi}{\mathord}{mtpsymbol}{"46}
1583 \DeclareMathSymbol{\mst@Psi}{\mathord}{mtpsymbol}{"59}
1584 \DeclareMathSymbol{\mst@Omega}{\mathord}{mtpsymbol}{"57}
1585 \else

```
not symbolgreek but eulergreek or selfGreek. Note 2015/10/31 : apparemment à un moment dans le passé je considérais eulergreek et selfGreek comme pouvant être utilisés simultanément car j'avais ici "or both". Mais je laisse tomber tout effort réel de m'en préoccuper.
\begin{tabular}{|c|c|c|}
\hline 1586 & \(\backslash\) DeclareMathSymbol\mst@Digamma & \{\mathalpha\}\{\mst@font@tbu\}\{"46\} \\
\hline 1587 & \DeclareMathSymbol\mst@Gamma & \{\mathalpha\}\{\mst@font@tbu\}\{"00\} \\
\hline 1588 & \DeclareMathSymbol\mst@Delta & \{\mathalpha\}\{\mst@font@tbu\}\{"01\} \\
\hline 1589 & \DeclareMathSymbol\mst@Theta & \{\mathalpha\}\{\mst@font@tbu\}\{"02\} \\
\hline 1590 & \DeclareMathSymbol\mst@Lambda & \{\mathalpha\}\{\mst@font@tbu\}\{"03\} \\
\hline 1591 & \DeclareMathSymbol\mst@Xi & \{\mathalpha\}\{\mst@font@tbu\}\{"04\} \\
\hline 1592 & \(\backslash\) DeclareMathSymbol\mst@Pi & \{\mathalpha\}\{\mst@font@tbu\}\{"05\} \\
\hline 1593 & \DeclareMathSymbol\mst@Sigma & \{\mathalpha\}\{\mst@font@tbu\}\{"06\} \\
\hline 1594 & \(\backslash\) DeclareMathSymbol\mst@upsilon & \{\mathalpha\}\{\mst@font@tbu\}\{"07\} \\
\hline 1595 & \(\backslash\) DeclareMathSymbol\mst@Phi & \{\mathalpha\}\{\mst@font@tbu\}\{"08\} \\
\hline 1596 & \DeclareMathSymbol\mst@Psi & \{\mathalpha\}\{\mst@font@tbu\}\{"09\} \\
\hline 1597 & \DeclareMathSymbol\mst@Omega & \{\mathalpha\}\{\mst@font@tbu\}\{"OA\} \\
\hline 1598 & \(\backslash \mathrm{fi}\) & \\
\hline 1599 & & \\
\hline
\end{tabular}

There are differences regarding Euler and Symbol with respect to the available var-letters. We include one or two things like the wp and the partial.

The lower case Greek letters in default \(\mathrm{IA}_{\mathrm{E}} \mathrm{X}\) are of type mathord. If we use the Euler font it is perhaps better to have them be of type mathalpha
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1600 \ifmst@goahead} \\
\hline 1601 & \ifmst@eulergreek \\
\hline 1602 & \DeclareMathSymbol\{\mst@alpha\} \{\mathalpha\}\{mteulervm\}\{"OB\} \\
\hline 1603 & \DeclareMathSymbol\{\mst@beta\} \{\mathalpha\}\{mteulervm\}\{"OC\} \\
\hline 04 & \DeclareMathSymbol\{\mst@gamma\} \{\mathalpha\}\{mteulervm\}\{"OD\} \\
\hline 1605 & \DeclareMathSymbol\{\mst@delta\} \{\mathalpha\}\{mteulervm\}\{"OE\} \\
\hline 1606 & \DeclareMathSymbol\{\mst@epsilon\}\{\mathalpha\}\{mteulervm\}\{"0F\} \\
\hline 1607 & \DeclareMathSymbol\{\mst@zeta\} \{\mathalpha\}\{mteulervm\}\{"10\} \\
\hline 1608 & \DeclareMathSymbol\{\mst@eta\} \{\mathalpha\}\{mteulervm\}\{"11\} \\
\hline 1609 & \DeclareMathSymbol\{\mst@theta\} \{\mathalpha\}\{mteulervm\}\{"12\} \\
\hline 1610 & \DeclareMathSymbol\{\mst@iota\} \{\mathalpha\}\{mteulervm\}\{"13\} \\
\hline 1611 & \DeclareMathSymbol\{\mst@kappa\} \{\mathalpha\}\{mteulervm\}\{"14\} \\
\hline 1612 & \DeclareMathSymbol\{\mst@lambda\} \{\mathalpha\}\{mteulervm\}\{"15\} \\
\hline 13 & \DeclareMathSymbol\{\mst@mu\} \{\mathalpha\}\{mteulervm\}\{"16\} \\
\hline 14 & \DeclareMathSymbol\{\mst@nu\} \{\mathalpha\}\{mteulervm\}\{"17\} \\
\hline 1615 & \DeclareMathSymbol\{\mst@xi\} \{\mathalpha\}\{mteulervm\}\{"18\} \\
\hline 1616 & \DeclareMathSymbol\{\mst@omicron\}\{\mathalpha\}\{mteulervm\}\{"6F\} \\
\hline 1617 & \DeclareMathSymbol\{\mst@pi\} \{\mathalpha\}\{mteulervm\}\{"19\} \\
\hline 18 & \DeclareMathSymbol\{\mst@rho\} \{\mathalpha\}\{mteulervm\}\{"1A\} \\
\hline 19 & \DeclareMathSymbol\{\mst@sigma\} \{\mathalpha\}\{mteulervm\}\{"1B\} \\
\hline 1620 & \DeclareMathSymbol\{\mst@tau\} \{\mathalpha\}\{mteulervm\}\{"1C\} \\
\hline 1621 & \DeclareMathSymbol\{\mst@upsilon\}\{\mathalpha\}\{mteulervm\}\{"1D\} \\
\hline 1622 & \DeclareMathSymbol\{\mst@phi\} \{\mathalpha\}\{mteulervm\}\{"1E\} \\
\hline 23 & \DeclareMathSymbol\{\mst@chi\} \{\mathalpha\}\{mteulervm\}\{"1F\} \\
\hline 1624 & \DeclareMathSymbol\{\mst@psi\} \{\mathalpha\}\{mteulervm\}\{"20\} \\
\hline 1625 & \DeclareMathSymbol\{\mst@omega\} \{\mathalpha\}\{mteulervm\}\{"21\} \\
\hline \multicolumn{2}{|l|}{1626 \%} \\
\hline 1627 & \DeclareMathSymbol \(\{\backslash \mathrm{mst@varepsilon} \mathrm{\}} \mathrm{\{ } \mathrm{\ mathalpha} \mathrm{\}} \mathrm{\{mteulervm} \mathrm{\}} \mathrm{\{"22} \mathrm{\}}\) \\
\hline 1628 & \DeclareMathSymbol\{\mst@vartheta\}\{\mathalpha\}\{mteulervm\}\{"23\} \\
\hline 29 & \DeclareMathSymbol\{\mst@varpi\} \{\mathalpha\}\{mteulervm\}\{"24\} \\
\hline 30 & \let\mst@varrho=\mst@rho \\
\hline 1631 & \let\mst@varsigma=\mst@sigma \\
\hline 1632 & \DeclareMathSymbol\{\mst@varphi\} \{\mathalpha\}\{mteulervm\}\{"27\} \\
\hline \multicolumn{2}{|l|}{\(1633 \%\)} \\
\hline 34 & \DeclareMathSymbol\{\mst@partial\}\{\mathalpha\}\{mteulervm\}\{"40\} \\
\hline 1635 & \DeclareMathSymbol\{\mst@wp\}\{\mathalpha\}\{mteulervm\}\{"7D\} \\
\hline 36 & \DeclareMathSymbol\{\mst@ell\}\{\mathalpha\}\{mteulervm\}\{"60\} \\
\hline 1637 & \else \\
\hline 1638 & \ifmst@symbolgreek \\
\hline 1639 & \DeclareMathSymbol\{\mst@alpha\}\{\mathord\}\{mtpsymbol\}\{"61\} \\
\hline 1640 & \DeclareMathSymbol\{\mst@beta\}\{\mathord\}\{mtpsymbol\}\{"62\} \\
\hline 1641 & \DeclareMathSymbol\{\mst@gamma\}\{\mathord\}\{mtpsymbol\}\{"67\} \\
\hline 1642 & \DeclareMathSymbol\{\mst@delta\}\{\mathord\}\{mtpsymbol\}\{"64\} \\
\hline 1643 & \DeclareMathSymbol\{\mst@epsilon\}\{\mathord\}\{mtpsymbol\}\{"65\} \\
\hline 1644 & \DeclareMathSymbol\{\mst@zeta\}\{\mathord\}\{mtpsymbol\}\{"7A\} \\
\hline 1645 & \(\backslash\) DeclareMathSymbol\{\mst@eta\}\{\mathord\}\{mtpsymbol\}\{"68\} \\
\hline 1646 & \DeclareMathSymbol\{\mst@theta\}\{\mathord\}\{mtpsymbol\}\{"71\} \\
\hline 1647 & \DeclareMathSymbol\{\mst@iota\}\{\mathord\}\{mtpsymbol\}\{"69\} \\
\hline 1648 & \DeclareMathSymbol\{\mst@kappa\}\{\mathord\}\{mtpsymbol\}\{"6B\} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1649 & \(\backslash\) DeclareMathSymbol\{\mst@lambda\}\{\mathord\}\{mtpsymbol\}\{"6C\} \\
\hline 1650 & \(\backslash\) DeclareMathSymbol \(\backslash \backslash \mathrm{mst@mu}\}\{\backslash \mathrm{mathord} \mathrm{\}}\) \{mtpsymbol\}\{"6D\} \\
\hline 1651 & \DeclareMathSymbol\{\mst@nu\}\{\mathord\}\{mtpsymbol\}\{"6E\} \\
\hline 1652 & \(\backslash\) DeclareMathSymbol\{\mst@xi\}\{\mathord\}\{mtpsymbol\}\{"78\} \\
\hline 1653 & \DeclareMathSymbol\{\mst@omicron\}\{\mathord\}\{mtpsymbol\}\{"6F\} \\
\hline 1654 & \DeclareMathSymbol\{\mst@pi\}\{\mathord\}\{mtpsymbol\}\{"70\} \\
\hline 1655 & \DeclareMathSymbol\{\mst@rho\}\{\mathord\}\{mtpsymbol\}\{"72\} \\
\hline 1656 & \DeclareMathSymbol\{\mst@sigma\}\{\mathord\}\{mtpsymbol\}\{"73\} \\
\hline 1657 & \DeclareMathSymbol\{\mst@tau\}\{\mathord\}\{mtpsymbol\}\{"74\} \\
\hline 1658 & \DeclareMathSymbol\{\mst@upsilon\}\{\mathord\}\{mtpsymbol\}\{"75\} \\
\hline 1659 & \DeclareMathSymbol\{\mst@phi\}\{\mathord\}\{mtpsymbol\}\{"66\} \\
\hline 1660 & \DeclareMathSymbol\{\mst@chi\}\{\mathord\}\{mtpsymbol\}\{"63\} \\
\hline 1661 & \DeclareMathSymbol\{\mst@psi\}\{\mathord\}\{mtpsymbol\}\{"79\} \\
\hline 1662 & \DeclareMathSymbol\{\mst@omega\}\{\mathord\}\{mtpsymbol\}\{"77\} \\
\hline 1663 & \let\mst@varepsilon=\mst@epsilon \\
\hline 1664 & \DeclareMathSymbol \(\{\) \mst@vartheta\}\{\mathord\}\{mtpsymbol\}\{"4A\} \\
\hline 1665 & \DeclareMathSymbol\{\mst@varpi\}\{\mathord\}\{mtpsymbol\}\{"76\} \\
\hline 1666 & \let\mst@varrho=\mst@rho \\
\hline 1667 & \DeclareMathSymbol \{\mst@varsigma\}\{\mathord\}\{mtpsymbol\}\{"56\} \\
\hline 1668 & \DeclareMathSymbol\{\mst@varphi\}\{\mathord\}\{mtpsymbol\}\{"6A\} \\
\hline 1669 & \DeclareMathSymbol\{\mst@partial\}\{\mathord\}\{mtpsymbol\}\{"B6\} \\
\hline 1670 & \(\backslash\) DeclareMathSymbol\{\mst@wp\}\{\mathord\}\{mtpsymbol\}\{"C3\} \\
\hline 1671 & \(\backslash f i\) \\
\hline 1672 & \fi \\
\hline & \\
\hline
\end{tabular}
\alphaup etc... Completely refactored at \(1.3 y\) to define \Alphaup, \Alphait, \alphaup, \alphait, etc... and prepare templates \(\backslash A l p h a, \ldots, \backslash a l p h a, \ldots\), which when activating a math version will be submitted to an \expanded, whose behavior will depend on version-specific conditionals.
```

1674 \ifmst@LGRgreek
1675% cf http://milde.users.sourceforge.net/LGR/lgrxenc.def.html
1676% et greek.ldf du package babel
1677 \DeclareMathSymbol{\Alphaup}{\mathalpha}{mtgreekup}{65}
1678 \DeclareMathSymbol{\Betaup}{\mathalpha}{mtgreekup}{66}
1679 \DeclareMathSymbol{\Epsilonup}{\mathalpha}{mtgreekup}{69}
1680 \DeclareMathSymbol{\Zetaup}{\mathalpha}{mtgreekup}{90}
1681 \DeclareMathSymbol{\Etaup}{\mathalpha}{mtgreekup}{72}
1682 \DeclareMathSymbol{\Iotaup}{\mathalpha}{mtgreekup}{73}
1683 \DeclareMathSymbol{\Kappaup}{\mathalpha}{mtgreekup}{75}
1684 \DeclareMathSymbol{\Muup}{\mathalpha}{mtgreekup}{77}
1685 \DeclareMathSymbol{\Nuup}{\mathalpha}{mtgreekup}{78}
1686 \DeclareMathSymbol{\Omicronup}{\mathalpha}{mtgreekup}{79}
1687 \DeclareMathSymbol{\Rhoup}{\mathalpha}{mtgreekup}{82}
1688 \DeclareMathSymbol{\Tauup}{\mathalpha}{mtgreekup}{84}
1689 \DeclareMathSymbol{\Chiup}{\mathalpha}{mtgreekup}{81}
1690 %
1691 \DeclareMathSymbol{\Alphait}{\mathalpha}{mtgreekit}{65}
1692 \DeclareMathSymbol{\Betait}{\mathalpha}{mtgreekit}{66}
1693 \DeclareMathSymbol{\Epsilonit}{\mathalpha}{mtgreekit}{69}

```
```

1694 \DeclareMathSymbol\{\Zetait\}\{\mathalpha\}\{mtgreekit\}\{90\}
1695 \DeclareMathSymbol\{\Etait\}\{\mathalpha\}\{mtgreekit\}\{72\}
1696 \DeclareMathSymbol\{\Iotait\}\{\mathalpha\}\{mtgreekit\}\{73\}
1697 \DeclareMathSymbol\{\Kappait\}\{\mathalpha\}\{mtgreekit\}\{75\}
1698 \DeclareMathSymbol\{\Muit\}\{\mathalpha\}\{mtgreekit\}\{77\}
1699 \DeclareMathSymbol\{\Nuit\}\{\mathalpha\}\{mtgreekit\}\{78\}
1700 \DeclareMathSymbol\{\Omicronit\}\{\mathalpha\}\{mtgreekit\}\{79\}
1701 \DeclareMathSymbol\{\Rhoit\}\{\mathalpha\}\{mtgreekit\}\{82\}
1702 \DeclareMathSymbol\{\Tauit\}\{\mathalpha\}\{mtgreekit\}\{84\}
1703 \DeclareMathSymbol\{\Chiit\}\{\mathalpha\}\{mtgreekit\}\{81\}

```
1.3w and earlier had a bug regarding Digamma which was set up to use same font shape as for lowercase digamma.
1704 \DeclareMathSymbol\{\Digammaup\}\{\mathalpha\}\{mtgreekup\}\{195\}
1705 \DeclareMathSymbol\{\Digammait\}\{\mathalpha\}\{mtgreekit\}\{195\}
1706 \%
1707 \DeclareMathSymbol\{\Gammaup\}\{\mathalpha\}\{mtgreekup\}\{71\}
1708 \DeclareMathSymbol\{\Deltaup\}\{\mathalpha\}\{mtgreekup\}\{68\}
1709 \DeclareMathSymbol\{\Thetaup\}\{\mathalpha\}\{mtgreekup\}\{74\}
1710 \DeclareMathSymbol\{\Lambdaup\}\{\mathalpha\}\{mtgreekup\}\{76\}
1711 \DeclareMathSymbol\{\Xiup\}\{\mathalpha\}\{mtgreekup\}\{88\}
1712 \DeclareMathSymbol\{\Piup\}\{\mathalpha\}\{mtgreekup\}\{80\}
1713 \DeclareMathSymbol\{\Sigmaup\}\{\mathalpha\}\{mtgreekup\}\{83\}
1714 \DeclareMathSymbol\{\Upsilonup\}\{\mathalpha\}\{mtgreekup\}\{85\}
1715 \DeclareMathSymbol\{\Phiup\}\{\mathalpha\}\{mtgreekup\}\{70\}
1716 \DeclareMathSymbol\{\Psiup\}\{\mathalpha\}\{mtgreekup\}\{89\}
1717 \DeclareMathSymbol\{\Omegaup\}\{\mathalpha\}\{mtgreekup\}\{87\}
1718 \%
1719 \DeclareMathSymbol\{\Gammait\}\{\mathalpha\}\{mtgreekit\}\{71\}
1720 \DeclareMathSymbol\{\Deltait\}\{\mathalpha\}\{mtgreekit\}\{68\}
1721 \DeclareMathSymbol\{\Thetait\}\{\mathalpha\}\{mtgreekit\}\{74\}
1722 \DeclareMathSymbol\{\Lambdait\}\{\mathalpha\}\{mtgreekit\}\{76\}
1723 \DeclareMathSymbol\{\Xiit\}\{\mathalpha\}\{mtgreekit\}\{88\}
1724 \DeclareMathSymbol\{\Piit\}\{\mathalpha\}\{mtgreekit\}\{80\}
1725 \DeclareMathSymbol\{\Sigmait\}\{\mathalpha\}\{mtgreekit\}\{83\}
1726 \DeclareMathSymbol\{\Upsilonit\}\{\mathalpha\}\{mtgreekit\}\{85\}
1727 \DeclareMathSymbol\{\Phiit\}\{\mathalpha\}\{mtgreekit\}\{70\}
1728 \DeclareMathSymbol\{\Psiit\}\{\mathalpha\}\{mtgreekit\}\{89\}
1729 \DeclareMathSymbol\{\Omegait\}\{\mathalpha\}\{mtgreekit\}\{87\}
1730 \%
1731 \def\mst@Alpha\{\ifmst@greek@upper@up\Alphaup\else\Alphait\fi\}\%
1732 \def\mst@Beta\{\ifmst@greek@upper@up\Betaup\else\Betait\fi\}\%
1733 \def \mst@Epsilon\{\ifmst@greek@upper@up\Epsilonup\else\Epsilonit\fi\}\%
1734 \def\mst@Zeta\{\ifmst@greek@upper@up\Zetaup\else\Zetait\fi\}\%
1735 \def \mst@Eta\{\ifmst@greek@upper@up\Etaup\else\Etait\fi\}\%
1736 \def \(\backslash m s t @ I o t a\{\backslash i f m s t @ g r e e k @ u p p e r @ u p \backslash I o t a u p \backslash e l s e \backslash I o t a i t \backslash f i\} \%\)
1737 \def\mst@Kappa\{\ifmst@greek@upper@up\Kappaup\else\Kappait\fi\}\%
1738 \def\mst@Mu\{\ifmst@greek@upper@up\Muup\else\Muit\fi\}\%
1739 \def\mst@Nu\{\ifmst@greek@upper@up\Nuup\else\Nuit\fi\}\%
1740 \def\mst@Omicron\{\ifmst@greek@upper@up\Omicronup\else\Omicronit\fi\}\%

1741 \def\mst@Rho\{\ifmst@greek@upper@up\Rhoup\else\Rhoit\fi\}\%
\DeclareMathSymbol\{\iotaup\}\{\mathalpha\}\{mtgreekup\}\{105\}
1768 \DeclareMathSymbol\{\kappaup\}\{\mathalpha\}\{mtgreekup\}\{107\}

Only varsigma defined (I should check this again)
\def \mst@Tau\{\ifmst@greek@upper@up\Tauup\else\Tauit\fi\}\% \def \mst@Chi\{\ifmst@greek@upper@up\Chiup\else\Chiit\fi\}\% \(\%\)
\def\mst@Digamma\{\ifmst@greek@upper@up\Digammaup\else\Digammait\fi\}\% \%
\def\mst@Gamma\{\ifmst@greek@upper@up\Gammaup\else\Gammait\fi\}\%
\def \mst@Delta\{\ifmst@greek@upper@up\Deltaup \else\Deltait\fi\}\%
\def \mst@Theta\{\ifmst@greek@upper@up\Thetaup\else\Thetait\fi\}\%
\def \mst@Lambda\{\ifmst@greek@upper@up\Lambdaup\else\Lambdait\fi\}\%
\def\mst@Xi\{\ifmst@greek@upper@up\Xiup\else\Xiit\fi\}\%
\def\mst@Pi\{\ifmst@greek@upper@up\Piup\else\Piit\fi\}\%
\def \mst@Sigma\{\ifmst@greek@upper@up\Sigmaup\else\Sigmait\fi\}\%
\def\mst@Upsilon\{\ifmst@greek@upper@up\Upsilonup\else\Upsilonit\fi\}\%
\def \mst@Phi\{\ifmst@greek@upper@up\Phiup\else\Phiit\fi\}\%
\def \mst@Psi\{\ifmst@greek@upper@up\Psiup\else\Psiit\fi\}\%
\def\mst@Omega\{\ifmst@greek@upper@up\Omegaup\else\Omegait\fi\}\% \%
\DeclareMathSymbol\{\alphaup\}\{\mathalpha\}\{mtgreekup\}\{97\}
\DeclareMathSymbol\{\betaup\}\{\mathalpha\}\{mtgreekup\}\{98\}
\DeclareMathSymbol\{\gammaup\}\{\mathalpha\}\{mtgreekup\}\{103\}
\DeclareMathSymbol\{\deltaup\}\{\mathalpha\}\{mtgreekup\}\{100\}
\DeclareMathSymbol\{\epsilonup\}\{\mathalpha\}\{mtgreekup\}\{101\}
\DeclareMathSymbol\{\zetaup\}\{\mathalpha\}\{mtgreekup\}\{122\}
\DeclareMathSymbol\{\etaup\}\{\mathalpha\}\{mtgreekup\}\{104\}
\DeclareMathSymbol\{\thetaup\}\{\mathalpha\}\{mtgreekup\}\{106\}
\DeclareMathSymbol\{\iotaup\}\{\mathalpha\}\{mtgreekup\}\{105\}
\DeclareMathSymbol\{\kappaup\}\{\mathalpha\}\{mtgreekup\}\{107\}
\DeclareMathSymbol\{\lambdaup\}\{\mathalpha\}\{mtgreekup\}\{108\}
\DeclareMathSymbol\{\muup\}\{\mathalpha\}\{mtgreekup\}\{109\}
\(\backslash\) DeclareMathSymbol\{\nuup\}\{\mathalpha\}\{mtgreekup\}\{110\}
\(\backslash\) DeclareMathSymbol\{\xiup\}\{\mathalpha\}\{mtgreekup\}\{120\}
\DeclareMathSymbol\{\omicronup\}\{\mathalpha\}\{mtgreekup\}\{111\}
\DeclareMathSymbol\{\piup\}\{\mathalpha\}\{mtgreekup\}\{112\}
\DeclareMathSymbol\{\rhoup\}\{\mathalpha\}\{mtgreekup\}\{114\}
\DeclareMathSymbol\{\sigmaup\}\{\mathalpha\}\{mtgreekup\}\{115\}
\DeclareMathSymbol\{\tauup\}\{\mathalpha\}\{mtgreekup\}\{116\}
\DeclareMathSymbol\{\upsilonup\}\{\mathalpha\}\{mtgreekup\}\{117\}
\DeclareMathSymbol\{\phiup\}\{\mathalpha\}\{mtgreekup\}\{102\}
\DeclareMathSymbol\{\chiup\}\{\mathalpha\}\{mtgreekup\}\{113\}
\DeclareMathSymbol\{\psiup\}\{\mathalpha\}\{mtgreekup\}\{121\}
\DeclareMathSymbol\{\omegaup\}\{\mathalpha\}\{mtgreekup\}\{119\}
\%
\DeclareMathSymbol\{\digammaup\}\{\mathalpha\}\{mtgreekup\}\{147\}
\DeclareMathSymbol\{\varsigmaup\}\{\mathalpha\}\{mtgreekup\} \{99\}
\%
\DeclareMathSymbol\{\betait\}\{\mathalpha\}\{mtgreekit\}\{98\}
\begin{tabular}{|c|c|}
\hline 1789 & \DeclareMathSymbol\{\gammait\}\{\mathalpha\}\{mtgreekit\}\{103\} \\
\hline 1790 & \DeclareMathSymbol\{\deltait\}\{\mathalpha\}\{mtgreekit\}\{100\} \\
\hline 1791 & \DeclareMathSymbol\{\epsilonit\}\{\mathalpha\}\{mtgreekit\}\{101\} \\
\hline 1792 & \DeclareMathSymbol \{\zetait\}\{\mathalpha\}\{mtgreekit\} \{122\} \\
\hline 1793 & \DeclareMathSymbol\{\etait\}\{\mathalpha\}\{mtgreekit\} \{104\} \\
\hline 1794 & \DeclareMathSymbol\{\thetait\}\{\mathalpha\}\{mtgreekit\}\{106\} \\
\hline 1795 & \DeclareMathSymbol \{\iotait\}\{\mathalpha\}\{mtgreekit\}\{105\} \\
\hline 1796 &  \\
\hline 1797 & \DeclareMathSymbol\{\lambdait\}\{\mathalpha\}\{mtgreekit\}\{108\} \\
\hline 1798 & \DeclareMathSymbol \(\{\) \muit\}\{\mathalpha\}\{mtgreekit\}\{109\} \\
\hline 1799 &  \\
\hline 1800 & \DeclareMathSymbol\{\xiit\}\{\mathalpha\}\{mtgreekit\}\{120\} \\
\hline 1801 & \DeclareMathSymbol\{\omicronit\}\{\mathalpha\}\{mtgreekit\}\{111\} \\
\hline 1802 & \DeclareMathSymbol\{\piit\}\{\mathalpha\}\{mtgreekit\} \{112\} \\
\hline 1803 & \DeclareMathSymbol\{\rhoit\}\{\mathalpha\}\{mtgreekit\}\{114\} \\
\hline 1804 & \(\backslash\) DeclareMathSymbol\{\sigmait\}\{\mathalpha\}\{mtgreekit\}\{115\} \\
\hline 1805 & \DeclareMathSymbol\{\tauit\}\{\mathalpha\}\{mtgreekit\}\{116\} \\
\hline 1806 & \DeclareMathSymbol\{\upsilonit\}\{\mathalpha\}\{mtgreekit\}\{117\} \\
\hline 1807 & \DeclareMathSymbol\{\phiit\}\{\mathalpha\}\{mtgreekit\} \{102\} \\
\hline 1808 & \DeclareMathSymbol\{\chiit\}\{\mathalpha\}\{mtgreekit\}\{113\} \\
\hline 1809 & \DeclareMathSymbol\{\psiit\}\{\mathalpha\}\{mtgreekit\}\{121\} \\
\hline 1810 & \DeclareMathSymbol\{\omegait\}\{\mathalpha\}\{mtgreekit\}\{119\} \\
\hline 1811 & \% \\
\hline 1812 & \DeclareMathSymbol\{\digammait\}\{\mathalpha\}\{mtgreekit\} \{147\} \\
\hline 1813 & \DeclareMathSymbol\{\varsigmait\}\{\mathalpha\}\{mtgreekit\}\{99\} \\
\hline 1814 & \% \\
\hline 1815 & \(\backslash d e f \backslash m s t @ a l p h a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash a l p h a u p \ e l s e \backslash a l p h a i t \backslash f i\} \% ~\) \\
\hline 1816 & \def \mst@beta\{\ifmst@greek@lower@up\betaup\else\betait\fi\}\% \\
\hline 1817 & \def\mst@gamma\{\ifmst@greek@lower@up\gammaup\else\gammait\fi\}\% \\
\hline 1818 & \(\backslash d e f \backslash m s t @ d e l t a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash d e l t a u p \ e l s e \backslash d e l t a i t \ f i\} \% ~\) \\
\hline 1819 & \def \mst@epsilon\{\ifmst@greek@lower@up\epsilonup\else\epsilonit\fi\}\% \\
\hline 1820 & \def\mst@zeta\{\ifmst@greek@lower@up\zetaup\else\zetait\fi\}\% \\
\hline 1821 & \def\mst@eta\{\ifmst@greek@lower@up\etaup\else\etait\fi\}\% \\
\hline 1822 &  \\
\hline 1823 & \def\mst@iota\{\ifmst@greek@lower@up\iotaup\else\iotait\fi\}\% \\
\hline 1824 & \def\mst@kappa\{\ifmst@greek@lower@up\kappaup\else\kappait\fi\}\% \\
\hline 1825 & \(\backslash d e f \backslash m s t @ l a m b d a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash l a m b d a u p \ e l s e \backslash l a m b d a i t \backslash f i\} \% ~\) \\
\hline 1826 & \def\mst@mu\{\ifmst@greek@lower@up\muup\else\muit\fi\}\% \\
\hline 1827 & \def \mst@nu\{\ifmst@greek@lower@up\nuup\else\nuit\fi\}\% \\
\hline 1828 & \def\mst@xi\{\ifmst@greek@lower@up\xiup\else\xiit\fi\}\% \\
\hline 1829 & \def \mst@omicron\{\ifmst@greek@lower@up\omicronup\else\omicronit\fi\}\% \\
\hline 1830 & \def\mst@pi\{\ifmst@greek@lower@up\piup\else\piit\fi\}\% \\
\hline 1831 & \def\mst@rho\{\ifmst@greek@lower@up\rhoup\else\rhoit\fi\}\% \\
\hline 1832 & \(\backslash d e f \backslash m s t @ s i g m a\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash s i g m a u p \ e l s e \backslash s i g m a i t \ f i\} \% ~\) \\
\hline 1833 & \def\mst@tau\{\ifmst@greek@lower@up\tauup\else\tauit\fi\}\% \\
\hline 1834 & \def\mst@upsilon\{\ifmst@greek@lower@up\upsilonup\else\upsilonit\fi\}\% \\
\hline 1835 & \def\mst@phi\{\ifmst@greek@lower@up\phiup\else\phiit\fi\}\% \\
\hline 1836 & \(\backslash d e f \backslash m s t @ c h i\{\backslash i f m s t @ g r e e k @ l o w e r @ u p \backslash c h i u p \backslash e l s e \backslash c h i i t \backslash f i\} \% ~\) \\
\hline 1837 & \def\mst@psi\{\ifmst@greek@lower@up\psiup\else\psiit\fi\}\% \\
\hline
\end{tabular}
```

1838\def\mst@omega{\ifmst@greek@lower@up\omegaup\else\omegait\fi}%
1839 %
1840 \def\mst@digamma{\ifmst@greek@lower@up\digammaup\else\digammait\fi}%
1841 \def\mst@varsigma{\ifmst@greek@lower@up\varsigmaup\else\varsigmait\fi}%
1842 \fi

```
\(\backslash\) MTstandardgreek \MTcustomgreek MTrecordstandardgreek
1.3d 2014/05/23 defines the commands \MTstandardgreek and \MTcustomgreek for package and user. I leave \MTrecordstandardgreek undocumented as I don't want to encourage people to load math packages after mathastext.
1.3h 2015/10/31: corrected \MTcustomgreek as it caused \ell to become undefined under option symbolgreek and, much more catastrophic, caused \alpha, etc.. to become undefined under option selfGreek!
```

1843 \newcommand*{\MTstandardgreek}{}
1844 \newcommand*{\MTcustomgreek}{}
1845 \newcommand*{\MTrecordstandardgreek}{}
1846 \ifmst@customgreek
1847 {%
1848 \let\mst@origAlpha\Alpha
1849 \let\mst@origBeta\Beta
1850 \let\mst@origGamma\Gamma
1851 \let\mst@origDelta\Delta
1852 \let\mst@origEpsilon\Epsilon
1853 \let\mst@origZeta\Zeta
1854 \let\mst@origEta\Eta
1855 \let\mst@origTheta\Theta
1856 \let\mst@origIota\Iota
1857 \let\mst@origKappa\Kappa
1858 \let\mst@origLambda\Lambda
1859 \let\mst@origMu\Mu
1860 \let\mst@origNu\Nu
1 8 6 1 ~ \ l e t \ m s t @ o r i g X i \ X i ~
1862 \let\mst@origOmicron\Omicron
1863 \let\mst@origPi\Pi
1 8 6 4 \ l e t \ m s t @ o r i g R h o \ R h o ~
1865 \let\mst@origSigma\Sigma
1866 \let\mst@origTau\Tau
1867 \let\mst@origUpsilon\Upsilon
1868 \let\mst@origPhi\Phi
1869 \let\mst@origChi\Chi
1870 \let\mst@origPsi\Psi
1871 \let\mst@origOmega\Omega
1872 %
1873 \let\mst@origalpha\alpha
1874 \let\mst@origbeta\beta
1875 \let\mst@origgamma\gamma
1876 \let\mst@origdelta\delta
1877 \let\mst@origepsilon\epsilon
1878 \let\mst@origvarepsilon\varepsilon
1879 \let\mst@origzeta\zeta

```
\begin{tabular}{|c|c|}
\hline 1880 & \let\mst@origeta\eta \\
\hline 1881 & \let\mst@origtheta\theta \\
\hline 1882 & \let\mst@origvartheta\vartheta \\
\hline 1883 & \let\mst@origiota\iota \\
\hline 1884 & \let\mst@origkappa\kappa \\
\hline 1885 & \let\mst@origlambda\lambda \\
\hline 1886 & \let\mst@origmu\mu \\
\hline 1887 & \let\mst@orignu\nu \\
\hline 1888 & \let\mst@origxi\xi \\
\hline 1889 & \let\mst@origomicron\omicron \\
\hline 1890 & \let\mst@origpi\pi \\
\hline 1891 & \let\mst@origvarpi\varpi \\
\hline 1892 & \let\mst@origrho\rho \\
\hline 1893 & \let\mst@origvarrho\varrho \\
\hline 1894 & \let\mst@origsigma\sigma \\
\hline 1895 & \let\mst@origvarsigma\varsigma \\
\hline 1896 & \let\mst@origtau\tau \\
\hline 1897 & \let\mst@origupsilon\upsilon \\
\hline 1898 & \let\mst@origphi\phi \\
\hline 1899 & \let\mst@origvarphi\varphi \\
\hline 1900 & \let\mst@origchi\chi \\
\hline 1901 & \let\mst@origpsi\psi \\
\hline 1902 & \let\mst@origomega\omega \\
\hline 1903 & \let\mst@origDigamma\Digamma \\
\hline 1904 & \let\mst@origdigamma\digamma \\
\hline \multicolumn{2}{|l|}{1905 \%} \\
\hline 1906 & \let\mst@origpartial\partial \\
\hline 1907 & \let\mst@origwp\wp \\
\hline 1908 & \let\mst@origell\ell \}\% \\
\hline \multicolumn{2}{|l|}{1909 \MTrecordstandardgreek} \\
\hline \multicolumn{2}{|l|}{1910 \renewcommand*\{\MTstandardgreek\} \{\%} \\
\hline 1911 & \(\backslash\) let \(\backslash\) Alpha\mst@origAlpha \\
\hline 1912 & \let\Beta\mst@origBeta \\
\hline 1913 & \let\Gamma\mst@origGamma \\
\hline 1914 & \let\Delta\mst@origDelta \\
\hline 1915 & \let\Epsilon\mst@origEpsilon \\
\hline 1916 & \let\Zeta\mst@origZeta \\
\hline 1917 & \let\Eta\mst@origEta \\
\hline 1918 & \let\Theta\mst@origTheta \\
\hline 1919 & \let\Iota\mst@origIota \\
\hline 1920 & \let\Kappa\mst@origKappa \\
\hline 1921 & \let\Lambda\mst@origLambda \\
\hline 1922 & \let\Mu\mst@origMu \\
\hline 1923 & \let\Nu\mst@origNu \\
\hline 1924 & \let\Xi\mst@origXi \\
\hline 1925 & \let\Omicron\mst@origOmicron \\
\hline 1926 & \let\Pi\mst@origPi \\
\hline 1927 & \let\Rho\mst@origRho \\
\hline 1928 & \let\Sigma\mst@origSigma \\
\hline
\end{tabular}
```

1929 \let\Tau\mst@origTau
1930 \let\Upsilon\mst@origUpsilon
1 9 3 1 \ l e t \ P h i \ m s t @ o r i g P h i ~
1932 \let\Chi\mst@origChi
1933
1934
1935 %
1936
1937
1938
1939
1940
1 9 4 1
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968 %
1969 \let\partial\mst@origpartial
1970 \let\wp\mst@origwp
1971 \let\ell\mst@origell
1972 }%
1973 \ifmst@greekplus

```
\(1.3 z a\) implementation of LGRgreek+ option. It is not exactly clear what we should do for \mathnormal and \mathnormalbold.

This definition allows usage of \alpha for example in numerical context. To be completely clean perhaps we should get rid of final \(\backslash f i\), but old-fashioned \(\mathrm{IA}_{\mathrm{E}} \mathrm{X}\) does not have built-in
conveniences, were it not for the nested if's simple \expandafter would do, but here we would need three in four places. Or simply wrap the whole in \expanded. Anyway, not really important.
```

1974 \def \mst@define@lowergreekletter\#1\#2\{\%
1975 \protected\def\#1\{\ifcase\mst@mathalph
\ifmst@greek@lower@up\mathgreekup\{\#2\}\else\mathgreekit\{\#2\}\fi
1977 \or \% rm
1978 \mathgreekup\{\#2\}\%
1979 \or \% bf
1980 \mathgreekupbold\{\#2\}\%
1981 \or \% it
1982 \mathgreekit\{\#2\}\%
1983 \or \% normalbold
1984 \ifmst@greek@lower@up\mathgreekupbold\{\#2\}\else\mathgreekitbold\{\#2\}\fi
1985 \else \#2\fi\}\%
1986 \}
1987 \def \mst@define@uppergreekletter\#1\#2\{\%
$1988 \backslash$ protected\def\#1\{\ifcase\mst@mathalph
1989 \ifmst@greek@upper@up\mathgreekup\{\#2\}\else\mathgreekit\{\#2\}\fi
1990 \or \% rm
1991 \mathgreekup\{\#2\}\%
1992 \or \% bf
1993 \mathgreekupbold\{\#2\}\%
1994 \or \% it
\mathgreekit\{\#2\}\%
\or \% mathnormalbold
\ifmst@greek@upper@up\mathgreekupbold\{\#2\}\else\mathgreekitbold\{\#2\}\fi
\else \#2\fi\}\%
\}
2000 \{\%
2001 \mst@define@uppergreekletter \backslash Alpha\mst@Alpha
2002 \mst@define@uppergreekletter\Beta\mst@Beta
2003 \mst@define@uppergreekletter \backslash Epsilon\mst@Epsilon
2004 \mst@define@uppergreekletter\Zeta\mst@Zeta
2005 \mst@define@uppergreekletter \backslash Eta $\backslash m s t @ E t a$
2006 \mst@define@uppergreekletter\Iota\mst@Iota
2007 \mst@define@uppergreekletter\Kappa\mst@Kappa
2008 \mst@define@uppergreekletter $\backslash M u \backslash m s t @ M u$
2009 \mst@define@uppergreekletter $\backslash \mathrm{Nu} \backslash \mathrm{mst}$ @Nu
2010 \mst@define@uppergreekletter\Omicron\mst@Omicron
2011 \mst@define@uppergreekletter\Rho\mst@Rho
2012 \mst@define@uppergreekletter\Tau\mst@Tau
2013 \mst@define@uppergreekletter\Chi\mst@Chi
2014 \mst@define@uppergreekletter\Digamma\mst@Digamma
2015 \mst@define@uppergreekletter\Gamma\mst@Gamma
2016 \mst@define@uppergreekletter\Delta\mst@Delta
2017 \mst@define@uppergreekletter\Theta\mst@Theta
2018 \mst@define@uppergreekletter \backslash Lambda $\backslash m s t @ L a m b d a ~$
2019 \mst@define@uppergreekletter\Xi\mst@Xi
$2020 \backslash$ \mst@define@uppergreekletter \backslash Pi $\backslash m s t @ P i$

```
    \mst@define@uppergreekletter\Sigma\mst@Sigma
        \mst@define@uppergreekletter\Phi\mst@Phi
        \mst@define@uppergreekletter\Psi\mst@Psi
        \mst@define@uppergreekletter \(\backslash 0\) mega\mst@Omega
        \mst@define@lowergreekletter\alpha\mst@alpha
        \mst@define@lowergreekletter\beta\mst@beta
        \mst@define@lowergreekletter\gamma\mst@gamma
        \mst@define@lowergreekletter \delta\mst@delta
        \mst@define@lowergreekletter\epsilon\mst@epsilon
        \mst@define@lowergreekletter\zeta\mst@zeta
        \mst@define@lowergreekletter\eta\mst@eta
        \mst@define@lowergreekletter\theta\mst@theta
        \mst@define@lowergreekletter\iota\mst@iota
        \mst@define@lowergreekletter \kappa\mst@kappa
        \mst@define@lowergreekletter \lambda\mst@lambda
        \mst@define@lowergreekletter\mu\mst@mu
        \mst@define@lowergreekletter\nu\mst@nu
        \mst@define@lowergreekletter\xi\mst@xi
        \mst@define@lowergreekletter\omicron\mst@omicron
        \mst@define@lowergreekletter\pi\mst@pi
        \mst@define@lowergreekletter\rho\mst@rho
        \mst@define@lowergreekletter\sigma\mst@sigma
        \mst@define@lowergreekletter\tau\mst@tau
        \mst@define@lowergreekletter\upsilon\mst@upsilon
        \mst@define@lowergreekletter\phi\mst@phi
        \mst@define@lowergreekletter\chi\mst@chi
        \mst@define@lowergreekletter\psi\mst@psi
        \mst@define@lowergreekletter\omega\mst@omega
        \mst@define@lowergreekletter\varsigma\mst@varsigma
        \mst@define@lowergreekletter\digamma\mst@digamma
        \}\%
2053 \else

Under selfGreek or other Greek option but not LGRgreek, these Greek letter control sequences are already \mathchar's, but under LGRgreek they need (well not really, but I feel it is cleaner) expansion which will react to the Boolean saying if using 'upright' or 'italic'. This Boolean setting is recorded when declaring a math version and reenacted when \MTversion is encountered in the document body. We must be careful not to contaminate things in the principal mode from math version declarations but I think my (now quite old) code is globally designed to achieve this protection see how \(\backslash M T D e c l a r e V e r s i o n ~ i s ~ d o n e . ~ T h e ~ \ M T c u s t o m g r e e k ~ w i l l ~ a l w a y s ~ b e ~ e x e c u t e d ~\) in preamble at least once, except under subdued option.

The \expanded's act on unexpanding tokens if not used under LGRgreek regimen.
\begin{tabular}{|c|c|}
\hline & \% \\
\hline 2055 & \expanded\{\% \\
\hline 2056 & \let\noexpand \Alpha\mst@Alpha \\
\hline 2057 & \let\noexpand\Beta \mst@Beta \\
\hline 2058 & \let\noexpand\Epsilon\mst@Epsilon \\
\hline 2059 & \let\noexpand\Zeta\mst@Zeta \\
\hline 2060 & \let\noexpand\Eta\mst@Eta \\
\hline
\end{tabular}
1.3h: \mst@Digamma not defined if symbolgreek option.

\section*{2086}

2087
2088
2089
2090
2091
\let\noexpand\epsilon\mst@epsilon
2093 \let\noexpand\zeta\mst@zeta
2094 \let\noexpand\eta\mst@eta
2095 \let\noexpand\theta\mst@theta
2096 \let\noexpand\iota\mst@iota
2097 \let\noexpand\kappa\mst@kappa
2098 \let \(\backslash\) noexpand \(\backslash l a m b d a \backslash m s t @ l a m b d a ~\)
2099 \let\noexpand\mu\mst@mu
2100 \let\noexpand\nu\mst@nu
\(2101 \quad \backslash l e t \backslash n o e x p a n d \backslash x i \backslash m s t @ x i\)
2102 \let\noexpand\omicron\mst@omicron
\(2103 \backslash l e t \backslash n o e x p a n d \backslash p i \backslash m s t @ p i\)
2104 \let\noexpand\rho\mst@rho
2105 \let\noexpand\sigma\mst@sigma

2106
2107
2108
2109
2110
2111
2112
2113
\[
1 \text { on. d }
\]
1.3h: digamma only defined with option LGRgreek.

2114 \ifmst@LGRgreek
2115
2116
Conditional added 1.3h 2015/10/31.
2117 \ifmst@LGRgreek\else
2118 \let\varepsilon\mst@varepsilon
2119 \let\vartheta\mst@vartheta
2120 \let\varpi\mst@varpi
2121 \let\varrho\mst@varrho
2122 \let\varphi\mst@varphi
2123 \let\partial\mst@partial
2124 \let\wp\mst@wp
1.3h: no \mst@ell if symbolgreek (bugfix 1.3h 2015/10/31).
\(2125 \backslash i f m s t @ s y m b o l g r e e k \backslash e l s e \backslash l e t \backslash e l l \backslash m s t @ e l l \backslash f i\)
2126 \fi
2127 \fi
2128 \}\%
2129 \fi
2130 \fi
2131 \let \(\backslash\) Mathastextstandardgreek \(\backslash\) MTstandardgreek
2132 \let \(\backslash M a t h a s t e x t c u s t o m g r e e k \backslash M T c u s t o m g r e e k ~\)
2133 \ifmst@subdued\else\MTcustomgreek\fi
\inodot In 1.0, I had them of type mathord, here I choose mathalpha. If I used \(\backslash i\) and \(\backslash j\) from the text
\jnodot font the problem would be with the fontsize, if in scriptstyle. The amsmath \text would do the trick.
1.14b 2011/04/02: again this bug in the EU1/EU2 encoding part, as in the code redefining \(\$\) etc in math mode (see above). Fixed.
1.31 2016/01/29: anticipating TL2016 fontspec's switch to TU.
\(1.3 t 2018 / 08 / 22\) removes the definitions done of \(\backslash \mathrm{i}\) and \(\backslash \mathrm{j}\) since 1.12 (as robust commands usable both in text and math mode).
\(1.3 u\) lets the \imath and \(\backslash j m a t h\) react to the font encoding at each math version.
1.3 v lets the redefined \imath and \jmath be \(\backslash\) protected.
\(2134 \backslash\) def \(\backslash\) mst@subduedinodot \(\{\%\)
2135 \let\inodot\mst@original@imath
2136 \let\jnodot\mst@original@jmath
2137 \}\%
2138 \def \(\backslash m s t @ n o n s u b d u e d i n o d o t\{\%\)
2139 \expandafter \(\backslash\) let \(\backslash e x p a n d a f t e r \backslash i n o d o t\)
```

2140 \csname mst@inodot@mv\math@version\endcsname
\expandafter\let\expandafter\jnodot
\csname mst@jnodot@mv\math@version\endcsname
}%
\def\mst@dothe@inodotstuff\#1\#2\#3{%
\edef\mst@tmp@enc{\#3}%
\if1\mst@OneifUniEnc
\mst@Umathchardef\#1="7 \symmtletterfont "0131 \relax
\mst@Umathchardef\#2="7 \symmtletterfont "0237 \relax
\else
\DeclareMathSymbol{\#1}{\mathalpha}{mtletterfont}
{\csname\mst@tmp@enc\string\i\endcsname}
\DeclareMathSymbol{\#2}{\mathalpha}{mtletterfont}
{\csname\mst@tmp@enc\string\j\endcsname}
\fi}%
155\ifmst@defaultimath\else\mst@infoline{\string\imath\space and \string\jmath\space}
2156 \AtEndOfPackage{\AtBeginDocument{%
2157 \protected\def\imath{\inodot}%
2158 \protected\def\jmath{\jnodot}%
2159 }}%
2160 \fi

```
math accents Obsolete comments relative to the 2011 code:
I don't know how to get from the encoding to the slot positions of the accents (apart from going to look at all possible encodings definition files and putting this info here). In standard \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\), the math accents are taken from the 'operators' font. So we do the same here. Of course there is the problem that the user can define math versions with different encodings. Here I take T1 if it was the default at the time of loading the package, else OT1. 1.12b: I add LY1 which is quasi like OT1.

At 1.3u 2019/08/20 I decide to remove the hard-coded slot positions for OT1, T1 and LY1, and replace them with some hack which assumes LaTeX2e way of handling text accents got executed by the encoding definition file. If not, some breakage on package loading could occur, but this whole thing is conditional on the mathaccents option anyway, which per default is not executed.

The \vec accent is not considered here because it has no suitable available glyph in a standard 8bits text font encodings.

Also at \(1.3 u\) the math accents adapt to the font encoding at each math version.
(obsolete at 1.4) 1.3v adapts to \(\mathrm{LAT}_{\mathrm{E}} \mathrm{X}\) 2019-10-01 which now comes with robust math accent macros. The «original»-named macros are without the robustifying space (NOT true anymore, see 1.3 w next), as they only serve as meaning holders.
(obsolete at 1.4) On the other hand the macros indexed by math version names are (in the pdflatex branch) always defined via \DeclareMathAccent hence they will be robust with 2019-10-01 or later and we must use the \mst@robustifyingspace with them to access their real meaning (this thus differs from the situation with \hbar).
1.3w The above was a bit optimistic as amsmath for example modifies \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) internals and handles math accents differently.

We thus needed to double our \let's as, if amsmath is loaded, the cs with space will exist but not be paired in expected way with the original cs. This breaks things by the way if some math
accent is written to an external file under a certain context and executed in another context. The new context will be probably ignored if amsmath is loaded, as the external file will have an already expanded-once meaning.

Some macros with space in name might thus be created as \relax. Should I rather create \protected macros for the math accents with Unicode engines? Anyway, the construct does give good result with the few OpenType text fonts I tested.
```

2161 \let\mst@subduedmathaccents\@empty
2162\let\mst@nonsubduedmathaccents\@empty
2163 \ifmst@mathaccents
2164 \def\mst@subduedmathaccents{%
165\@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
2166
167 \do
2168 {\expandafter\let\csname\@tempa\expandafter\endcsname
\csname mst@original@\@tempa\endcsname
\expandafter\let\csname\@tempa\space\expandafter\endcsname
\csname mst@original@\@tempa\space\endcsname
}%
}%
\def\mst@nonsubduedmathaccents{%
\@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
{dot}{ddot}{mathring}{hat}{tilde}%
\do
{\expandafter\let\csname\@tempa\expandafter\endcsname
\csname mst@\@tempa @mv\math@version\endcsname
\expandafter\let\csname\@tempa\space\expandafter\endcsname
\csname mst@\@tempa @mv\math@version\space\endcsname
2182 }%
2183 }%
2184 \def\mst@dothe@mathaccentsstuff\#1\#2{%
2185 \begingroup
2186 \edef\mst@tmp@enc{\#2}%
2187 \def\@text@composite\#\#1\@text@composite\#\#2{\#\#2}%
2188 \let\add@accent\@firstoftwo
2189 \let\add@unicode@accent\@firstoftwo
2190 \if1\mst@OneifUniEnc
2191 \ifmst@unimathaccents
2192 \expandafter\xdef\csname mst@grave@mv\#1\mst@robustifyingspace\endcsname
2193 {\mst@Umathaccent
2194 7
2195 \number\symmtoperatorfont\space
2196 \csname\#2\string\`\endcsname{}\relax}%
2197 \expandafter\xdef\csname mst@acute@mv\#1\mst@robustifyingspace\endcsname
2198 {\mst@Umathaccent
2199 7
2200 \number\symmtoperatorfont\space
2201 \csname\#2\string\'\endcsname{}\relax}%
2202 \expandafter\xdef\csname mst@check@mv\#1\mst@robustifyingspace\endcsname
2203 {\mst@Umathaccent

```
    7
    \number\symmtoperatorfont \(\backslash\) space
    \csname\#2\string\v\endcsname\{\}\relax\}\%
    \expandafter\xdef\csname mst@breve@mv\#1\mst@robustifyingspace\endcsname
    \{\mst@Umathaccent
        7
        \number\symmtoperatorfont \(\backslash\) space
        \csname\#2\string\u\endcsname\{\}\relax\}\%
    \expandafter \(\backslash x d e f \backslash c s n a m e ~ m s t @ b a r @ m v \# 1 \backslash m s t @ r o b u s t i f y i n g s p a c e \backslash e n d c s n a m e\)
    \{\mst@Umathaccent
        7
        \number\symmtoperatorfont \(\backslash\) space
        \(\backslash\) csname\#2\string\=\endcsname\{\}\relax\}\%
    \expandafter\xdef\csname mst@dot@mv\#1\mst@robustifyingspace\endcsname
    \{\mst@Umathaccent
        7
        \number \(\backslash\) symmtoperatorfont \(\backslash\) space
        \csname\#2\string\.\endcsname\{\}\relax\}\%
    \expandafter \(\backslash x d e f \backslash c s n a m e ~ m s t @ d d o t @ m v \# 1 \backslash m s t @ r o b u s t i f y i n g s p a c e \backslash e n d c s n a m e\)
        \{\mst@Umathaccent
        7
        \number\symmtoperatorfont\space
        \csname\#2\string\"\endcsname\{\}\relax\}\%
    \expandafter \(\backslash x d e f \backslash c s n a m e ~ m s t @ m a t h r i n g @ m v \# 1 \backslash m s t @ r o b u s t i f y i n g s p a c e \backslash e n d c s n a m e\)
        \(\{\backslash\) mst@Umathaccent
        7
        \number\symmtoperatorfont \(\backslash\) space
        \csname\#2\string\r\endcsname\{\}\relax\}\%
    \expandafter\xdef\csname mst@hat@mv\#1\mst@robustifyingspace\endcsname
        \{\mst@Umathaccent
        7
        \number\symmtoperatorfont \(\backslash\) space
        \csname\#2\string\^\endcsname\{\}\relax\}\%
    \expandafter\xdef\csname mst@tilde@mv\#1\mst@robustifyingspace\endcsname
        \{\mst@Umathaccent
            7
            \number\symmtoperatorfont\space
            \csname\#2\string\\~\endcsname\{\}\relax\}\%
\else
\(1.3 u\) used some \def but this made the accent macro meanings look slightly different depending on whether the math version being set-up was with an 8bit encoding or TU encoding.
For the sake of uniform treatment we modify this at 1.3 v , but this is a bit complicated regarding timing: we need, in absence of unimathaccents option, in math versions with an OpenType font, to let the \acute etc... acquire back some prior non-mathastext meanings. To allow maximal flexibility, these original meaning get stored at begin document only. But \mst@nonsubduedmathaccents assigns to \acute etc... (in the robust sense with \(\mathrm{LA}_{\mathrm{E}} \mathrm{X}\) 2019-10-01 or later) the meaning stored in the macros with the math version in their names. Such \mst@acute@mvnormal etc... must thus be ready before \mst@nonsubduedmathaccents (or at least before the last such) execution: the code here must get executed after the definition of the
«original»-named macros but prior to the (last one, if multiple) \mst@nonsubduedmathaccents.
Hence 1.3 v delayed a bit the initial execution of this macro (see further down in the code) compared to what happened in 1.3 u .
We are in a group but \AtEndOfPackage does the right thing.
\begin{tabular}{|c|c|}
\hline 2243 & \(\backslash\) AtEndOfPackage\{\AtBeginDocument \(\{\%\) \\
\hline 2244 & \@tfor\@tempa:=\{grave\}\{acute\}\{check\} \{breve\}\{bar\}\% \\
\hline 2245 & \{dot\}\{ddot\}\{mathring\}\{hat\}\{tilde\}\% \\
\hline 2246 & \do \\
\hline 2247 & \{\expandafter\let \\
\hline 2248 & \csname mst@\@tempa @mv\#1\expandafter\endcsname \\
\hline 2249 & \csname mst@original@\@tempa\endcsname \\
\hline 2250 & \expandafter\let \\
\hline 2251 & \csname mst@\@tempa @mv\#1\space\expandafter\endcsname \\
\hline 2252 & \csname mst@original@\@tempa\space\endcsname\}\% \\
\hline 2253 & \}\}\% \\
\hline 2254 & \fi \\
\hline
\end{tabular}

This is needed because the pdflatex engine branch will use \DeclareMathAccent and it creates robust macros with \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) 2019-10-01 or later. As we want elsewhere in the package code not to have to check if under Unicode engine or not, we need to handle here also some definition of robust macros.

But wouldn't it be simpler to manage \protected macros?
```

2255
2256
2257 \do
2258
2259
2260 \expandafter\noexpand\csname mst@\@tempa @mv\#1 \endcsname}%
2261 }%
2262 \else

```
\DeclareMathAccent works \globally. And with \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) 2019-10-01 or later it creates robust macros.
```

\mst@DeclareMathAccent to work around https://github.com/latex3/latex2e/issues/

```
    216
2263 \expandafter \(\backslash m s t @ D e c l a r e M a t h A c c e n t \backslash e x p a n d a f t e r ~\)
2264 \{\csname mst@grave@mv\#1\endcsname\}\{\mathalpha\}\{mtoperatorfont\}\%
                    \{\csname\#2\string\`\endcsname\{\}\}
2265
2266
2267
2268
2269

    \(\{\backslash c s n a m e\) mst@check@mv\#1\endcsname\}\{\mathalpha\}\{mtoperatorfont\}\%
    \(\{\backslash c s n a m e \# 2 \backslash\) string \(\backslash v \backslash\) endcsname \(\}\}\)
2271
2272
2273
2274
2275
2276
    \expandafter \(\backslash m s t @ D e c l a r e M a t h A c c e n t \backslash e x p a n d a f t e r ~\)
    \(\{\backslash c s n a m e ~ m s t @ b a r @ m v \# 1 \backslash e n d c s n a m e\}\{\backslash\) mathalpha\}\{mtoperatorfont\}\%
2277
    \expandafter \(\backslash \mathrm{mst@DeclareMathAccent} \backslash\) expandafter
    \(\{\backslash c s n a m e\) mst@acute@mv\#1\endcsname\} \(\{\backslash\) mathalpha\}\{mtoperatorfont\} \(\%\)
    \{\csname\#2\string\'\endcsname\{\}\}
    \expandafter \(\backslash m s t @ D e c l a r e M a t h A c c e n t \backslash e x p a n d a f t e r ~\)
    \(\{\backslash c s n a m e\) mst@breve@mv\#1 \endcsname\}\{\mathalpha\}\{mtoperatorfont\}\%
    \{\csname\#2\string\u\endcsname\{\}\}
    \{\csname\#2\string\=\endcsname\{\}\}
            \expandafter \(\backslash m s t @ D e c l a r e M a t h A c c e n t \backslash e x p a n d a f t e r ~\)
                        \(\{\backslash c s n a m e ~ m s t @ d d o t @ m v \# 1 \backslash e n d c s n a m e\}\{\backslash m a t h a l p h a\}\{m t o p e r a t o r f o n t\} \%\)
                            \{\csname\#2\string\"\endcsname\{\}\}
    \expandafter\mst@DeclareMathAccent\expandafter
        \{\csname mst@tilde@mv\#1\endcsname\}\{\mathalpha\}\{mtoperatorfont\}\%
        \(\{\backslash c s n a m e \# 2 \backslash s t r i n g \backslash \sim \backslash e n d c s n a m e\}\}\)

The \MTDeclareVersion command is to be used in the preamble to declare a math version. A more complicated variant would also specify a choice of series for the Euler and Symbol font: anyhow Symbol only has the medium series, and Euler has medium and bold, so what is lacking is the possibility to create a version with a bold Euler. There is already one such version: the default bold one. And there is always the possibility to add to the preamble \(\backslash\) SetSymbolFont\{mteulervm\}\{versionname\} \(\{U\}\{z e u r\}\{b x\}\{n\}\) if one wants to have a math version with bold Euler characters.

For version 1.1 we add an optional parameter specifying the shape to be used for letters.
Note: \((2012 / 10 / 24)\) I really should check whether the user attempts to redefine the 'normal' and 'bold' versions and issue a warning in that case! Finally done at 1.3w 2019/11/16! Better late than never...
1.3c (2013/12/14) adds an extra optional parameter after all previous ones, to inherit the settings from another version. Typically to be used with [bold]. I take this opportunity to sanitize a bit some line endings to avoid generating (in the preamble, document macros were already careful of course) too many space tokens, at least inside macros. And I modifiy (correct? perhaps it was on purpose) the strange way I used \@onlypreamble in earlier version.
1.3 u adds storage of macros holding the needed meanings for \imath, \hbar, math accents, and the minus symbol, version wise.
1.3 w adds the check to forbid normal and bold as version names.

2297 \newcommand*\MTDeclareVersion [6] [] \{\%
2298 \edef \(\backslash m s t @ d e c l a r e v e r s i o n a r g s\{\{\# 1\}\{\# 2\}\{\# 3\}\{\# 4\}\{\# 5\}\{\# 6\}\} \%\)
2299 \edef\mst@version\{\#2\}\%
2300 \if0\ifx\mst@version\mst@normalversionname0\else
2301 \ifx\mst@version\mst@boldversionname0\else
\(2302 \quad 1 \backslash f i \backslash f i\)
2303 \expandafter \(\backslash\) expandafter \(\backslash\) expandafter
\(2304 \backslash\) MTDoNotDeclareVersion@\expandafter\@gobblefour
2305 \fi
2306 \relax\DeclareMathVersion\{\mst@version\}\MTDeclareVersion@

2307 \}\%
2308 \newcommand*\MTDoNotDeclareVersion@[1] [] \{\%
2309 \PackageWarningNoLine\{mathastext\}\{You asked to declare a version with name
2310 - \mst@version'.^^J\%
2311 \@spaces Sorry but you are not allowed to do that. ^^J\%
2312 \@spaces \ifmst@subdued Anyway the `subdued' option is in force\else
2313 Use rather \string\Mathastext\space macro (with no optional argument) \fi
2314 \}\}\%
2315 \newcommand*\MTDeclareVersion@[1] [] \{\%
2316 \edef \mst@tmp\{\#1\}\%
2317 \ifx\mst@tmp\empty\else
2318 \global\expandafter\let\csname mv@\mst@version\expandafter\endcsname
\csname mv@\#1\endcsname
2319
\(\backslash\) PackageInfo\{mathastext\}
\{Math version `\mst@version\string'\MessageBreak declared \on@line\MessageBreak
inherits from `\#1\string'\@gobble\}\%
2323
2324 \fi
\expandafter\MTDeclareVersion@@\mst@declareversionargs
2326 \}\%
2327 \newcommand*\MTDeclareVersion@@ [6] \{\%
2328 \expandafter\edef\csname mst@encoding@\mst@version\endcsname\{\#3\}\%
2329 \expandafter\edef\csname mst@family@\mst@version\endcsname\{\#4\}\%
2330 \expandafter\edef\csname mst@series@\mst@version\endcsname\{\#5\}\%
2331 \expandafter\edef \csname mst@shape@\mst@version\endcsname\{\#6\}\%
2332 \expandafter\edef \csname mst@boldvariant@\mst@version\endcsname\{\mst@bold\}\%
2333 \expandafter\edef \csname mst@itdefault@\mst@version\endcsname\{\itdefault\}\%
2334 \expandafter\edef\csname mst@rmdefault@\mst@version\endcsname\{\rmdefault\}\%
2335 \expandafter\edef \csname mst@sfdefault@\mst@version\endcsname\{\sfdefault\}\%
2336 \expandafter\edef \csname mst@ttdefault@\mst@version\endcsname\{\ttdefault\}\%
2337 \expandafter\edef\csname mst@exists@skip@\mst@version\endcsname
2338 \{\mst@exists@skip\}\%
2339 \expandafter\edef \csname mst@forall@skip@\mst@version\endcsname
\{\mst@forall@skip\}\%
\(2340 \quad\) \{\mst@forall@skip\}\%
2341 \expandafter\edef\csname
2343 \def\mst@tmp\{\#1\}\%
2344 \ifx\mst@tmp\empty
2345 \ifmst@italic
2346 \SetSymbolFont\{mtletterfont\}\{\#2\}\{\#3\}\{\#4\}\{\#5\}\{\mst@ltsh\}\%
2347 \immediate\write\m@ne\{\}\%
2348 \PackageInfo\{mathastext\}\%
2349
2350
2351
2352
\{\ifmst@noletters
\else
Latin letters in math version `\#2\string'\MessageBreak declared\on@line\MessageBreak will use the font \(\# 3 / \# 4 / \# 5 / \backslash m s t @ l\) tsh \ifmst@frenchmath\space(uppercase: \#6) \fi\MessageBreak \fi
\#1 not empty.
\(2378 \backslash\) SetSymbolFont\{mtletterfont\}\{\#2\}\{\#3\}\{\#4\}\{\#5\}\{\#1\}\%
2379 \immediate\write\m@ne\{\}\%
                                    \ifmst@noletters
                                    will use the font \#3/\#4/\#5/\#6\%
                                    \else
                                    will be in '\#6\string' shape\%
                                    \fi\@gobble\}\%
    \immediate\write\m@ne\{\}\%
    \expandafter\edef\csname mst@ltshape@\mst@version\endcsname\{\mst@ltsh\}\%
    \else
    \SetSymbolFont\{mtletterfont\}\{\#2\}\{\#3\}\{\#4\}\{\#5\}\{\#6\}\%
    \ifmst@noletters
    \else
    \immediate\write\m@ne\{\}\%
    \(\backslash\) PackageInfo\{mathastext\}\%
                                    declared\on@line\MessageBreak
    \fi
    \immediate\write\m@ne\{\}\%
    \expandafter\edef\csname mst@ltshape@\mst@version\endcsname\{\#6\}\%
        \fi
    \(\backslash\) PackageInfo\{mathastext\}\%
                                    \{\ifmst@noletters
                            \else
                    declared\on@line\MessageBreak
                    will use the font \#3/\#4/\#5/\#1\%
                    \fi
                            Other characters (digits, ...) and
                    \protect\log-like names \(\backslash\) MessageBreak
                    \ifmst@noletters
                    will use the font \#3/\#4/\#5/\#6\%
                    \else
                    will be in '\#6\string' shape\%
                    \fi\@gobble\}\%
    \immediate\write\m@ne\{\}\%
    \expandafter\edef\csname mst@ltshape@\mst@version\endcsname\{\#1\}\%
\fi
                            Other characters (digits, ...) and \protect\log-like names \(\backslash\) Messa
                                    \{Latin letters in math version `\#2\string'\MessageBreak
                                    will use the fonts \#3/\#4/\#5(\mst@bold)/\#6\@gobble\}\%
                            Latin letters in math version '\#2\string'\MessageBreak
                    \ifmst@frenchmath\space(uppercase: \#6) \fi\MessageBreak

Here and elsewhere 1.3za has removed an \ifmst@nonormalbold conditional.
\begin{tabular}{|c|c|}
\hline 2398 &  \\
\hline 2399 & \(\{\backslash\) csname mst@ltshape@\mst@version\endcsname\}\% \\
\hline 2400 & SymbolFont \{mtoperatorfont\} \{\#2\} \{\#3\} \{\#4\} \{\#5\} \{\#6\}\% \\
\hline
\end{tabular}

Since \(1.3 z a\) (and prior to 1.15 f) these math alphabet commands are always defined.
```

2401 \SetMathAlphabet{\Mathbf}{\#2}{\#3}{\#4}{\mst@bold}{\#6}
2402 \SetMathAlphabet{\Mathit}{\#2}{\#3}{\#4}{\#\#5}{\itdefault}
2403 \SetMathAlphabet{\Mathsf}{\#2}{\#3}{\sfdefault}{\#5}{\#6}
2404 \SetMathAlphabet{\Mathtt}{\#2}{\#3}{\ttdefault}{\#5}{\#6}
2405 \ifmst@needeuler
2406
2407

```

LGRgreeks selfGreeks

In the case of option LGRgreeks (selfGreeks), it is expected that the fonts used in each math versions exist in LGR (OT1) encoding. We first recalculate the shapes to be used for lowercase and uppercase Greek letters depending on the frenchmath and [it/up][g/G]reek options as well as on the (local to this version) shapes for letters and digits.
\(1.3 y\) replaces \updefault by \MTgreekupdefault and \itdefault by \MTgreekitdefault. It also prepares to store two Boolean settings saying whether lowercase respectively uppercase Greek letters will use 'upright' or 'italic' (LGRgreek(s) only).

The \(1.3 y\) refactoring of LGRgreek is done via a decoupling, thus things are done here under selfGreek or other Greek options which ultimately serve nothing and conversely things are done here for LGRgreek which are superfluous.
```

\def\mst@greek@lsh@loc{\csname mst@ltshape@\mst@version\endcsname}%
\def\mst@greek@ush@loc{\csname mst@shape@\mst@version\endcsname}%
\mst@greek@lower@uptrue
\expandafter\in@\expanded{{\mst@greek@lsh@loc.}}{it.,sl.}%
\ifin@\mst@greek@lower@upfalse\fi
\mst@greek@upper@uptrue
\expandafter\in@\expanded{{\mst@greek@ush@loc.}}{it.,sl.}%
\ifin@\mst@greek@upper@upfalse\fi
\ifmst@itgreek
\def\mst@greek@lsh@loc{\MTgreekitdefault}%
\def\mst@greek@ush@loc{\MTgreekitdefault}%
\mst@greek@lower@upfalse
\mst@greek@upper@upfalse
\i
\ifmst@upgreek
\def\mst@greek@lsh@loc{\MTgreekupdefault}%
\def\mst@greek@ush@loc{\MTgreekupdefault}%
\mst@greek@lower@uptrue
\mst@greek@upper@uptrue
\fi
\ifmst@frenchmath
\ifmst@itgreek\else
\ifmst@upgreek\else
\def\mst@greek@lsh@loc{\csname mst@shape@\mst@version\endcsname}%
\def\mst@greek@ush@loc{\csname mst@shape@\mst@version\endcsname}%
\mst@greek@lower@uptrue
\mst@greek@upper@uptrue
\fi\fi
\i
\ifcase\mst@greek@select
\or

```
```

2439 \def\mst@greek@ush@loc{\MTgreekitdefault}%
2440
2441
2442 \def\mst@greek@ush@loc{\MTgreekupdefault}%
2443
2444 \fi

```
\(1.3 z a\) refactoring to reduce code duplication; I briefly considered trying to enhance \(\backslash \mathrm{MTgreek}\) font to work also with LGRgreeks and selfGreeks but I have dropped the idea for now.
```

2445 \ifmst@LGRgreeks \def\mst@greekfont{\#4}\fi

```
2446 \ifmst@selfGreeks\def \mst@greekfont\{\#4\}\fi
2447 \ifmst@LGRgreek
2448 \SetSymbolFont\{mtgreekup\}\{\#2\}\{LGR\}\{\mst@greekfont\}\{\#5\}\{\MTgreekupdefault\}\%
2449 \SetSymbolFont\{mtgreekit\}\{\#2\}\{LGR\}\{\mst@greekfont\}\{\#5\}\{\MTgreekitdefault\}\%
2450
2451
2452

This is where the shape of uppercase/lowercase Greek letters is recorded, for \MTversion's triggered \MTcustomgreek to do the right thing.
2454 \expandafter\let\csname ifmst@greek@\mst@version @upper@up\expandafter\endcsname
2455 \csname ifmst@greek@upper@up\endcsname
2456 \expandafter\let\csname ifmst@greek@\mst@version @lower@up\expandafter\endcsname \csname ifmst@greek@lower@up\endcsname
2458 \immediate\write\m@ne\{\}\%
\PackageInfo\{mathastext\}\{Greek letters (upper:
- \ifmst@greek@upper@up\MTgreekupdefault\else\MTgreekitdefault\fi\string', lower:
- \ifmst@greek@lower@up\MTgreekupdefault\else\MTgreekitdefault\fi\string')\MessageBr
will use font family '\mst@greekfont\string' (LGR) \MessageBreak
in mathastext
math version `\mst@version\string'\MessageBreak
declared\}\%
2467 \immediate\write\m@ne\{\}\%
2468 \else
2469 \ifmst@selfGreek
2470 \SetSymbolFont\{mtselfGreekfont\}\{\#2\}\{0T1\}\{\mst@greekfont\}\{\#5\}\{\mst@greek@ush@loc\}\%
2471 \immediate\write\m@ne\{\}\%
2472 \PackageInfo\{mathastext\}\{Capital Greek letters (shape `\mst@greek@ush@loc\string'

2476 \immediate\write\m@ne\{\}\%
2477 \fi
2478 \fi

\(\backslash\) MTversion \MTversion@ \(\backslash\) MTversion@s \MTversion@@
2500 \let \(\backslash\) MathastextDeclareVersion\MTDeclareVersion
\expandafter\mst@dothe@inodotstuff \(\backslash m s t @ t m p\{\# 3\} \%\)
\ifmst@mathaccents
\mst@dothe@mathaccentsstuff\{\#2\}\{\#3\}\%
\fi
\edef \mst@tmp\{\expandafter\noexpand\csname mst@minus@mv\#2\endcsname
\ifmst@endash
\expandafter\mst@dothe@endashstuff\mst@tmp\{\#3\}\%
\else
\ifmst@emdash
\expandafter\mst@dothe@emdashstuff \(\backslash m s t @ t m p\{\# 3\} \%\)
\else
\expandafter\mst@dothe@hyphenstuff\mst@tmp
\fi
\fi
2500 \let \(\backslash\) MathastextDeclareVersion\MTDeclareVersion
\expandafter\noexpand\csname mst@jnodot@mv\#2\endcsname\}\%
\expandafter\noexpand\csname mst@varfam@minus@mv\#2\endcsname\}\%

This is a wrapper around \(\mathrm{IATEX}^{\prime}\) 's \mathversion: here we have an optional argument allowing a quick and easy change of the text fonts additionally to the math fonts. Present already in the initial version of the package (January 2011.)
1.15: some modifications for the subdued option vs LGRgreek and for the math muskips after \exists and \forall.
1.2: with the subdued option sets the math alphabets in the normal and bold math versions do not apply to operator names and non-alphabetical symbols. The switch for braces is left as it is.
1.2 b : with the subdued option, the italic corrections are not added. Else, we check the shape of letters in this version. Also, there was a bug since 1.15: the values of the math skips were taken not from the settings for the math version (\#2) but from those of the optional argument (\#1), if present...
1.3: activation of italic corrections is now separated from actual math activation of letters.
1.3c: a starred variant is added which does not modify the text fonts, only the math set-tup.
1.3d: replaced in \MTversion@ things like \edef \mst@encoding\{...\} and
\renewcommand\{\encodingdefault\}\{\mst@@encoding\}
by \edef \encodingdefault\{...\} etc... All those \mst@@. . . things were useless. I also redefine \seriesdefault rather than \mddefault.
1.3d: mechanism of restoration of Greek in subdued normal and bold versions has been to all cases, and not only for the LGRgreek option.
1.3u: version savvy (i.e. font-encoding savvy) minus sign, \hbar, \imath, math accents.
\(1.3 y\) : Booleans recovered from stored data in the math version will configure the things \(\backslash M T c u s t o m g r e e k\) do, under LGRgreek option.
```

2501 \newcommand*\MTversion {\@ifstar\MTversion@s\MTversion@}
2502 \newcommand*\MTversion@s [1]{\mathversion{\#1}\MTversion@@}
2503 \newcommand*\MTversion@ [2] []{%
This defines \math@version as expanded \#2.

```
\begin{tabular}{ll}
2504 & \mathversion\{\#2\}\% \\
2505 & \edef \(\backslash \mathrm{mst@tmpa} \mathrm{\{ } \mathrm{\# 1} \mathrm{\}} \mathrm{\%}\) \\
2506 & \ifx \(\backslash m s t @ t m p a \backslash e m p t y ~\)
\end{tabular}
1.3j has a stronger subdued which does \MTnormalprime, \MTnormalexists, \MTnormalforall rather than setting the skips to 0mu. Hence \MTversion by default should do \MTprimedoesskip, \(\backslash\) MTexistsdoesskip, \MTforalldoesskip.
\(1.3 u\) drops the argument, as the info is in \math@version from IATEX2e code.
2523 \newcommand*\MTversion@@ \{\%
2524 \MTexistsdoesskip
2525 \MTforalldoesskip
2526 \MTprimedoesskip
v1.15e: muskips.
2527 \mst@exists@muskip\csname mst@exists@skip@\math@version\endcsname\relax
\(2528 \backslash\) \mst@forall@muskip\csname mst@forall@skip@\math@version\endcsname\relax
v1.2: muskip for \prime.
2529 \mst@prime@muskip\csname mst@prime@skip@\math@version\endcsname\relax
v1. 2b: italic corrections except for italic/slanted (sic) letters, and of course except in the subdued normal and bold math versions.
v1.3: by default, letters are made mathematically active, even if italic corrections are not used, to allow the action of \(\backslash M T s e t m a t h s k i p s\).
\(\begin{array}{ll}2530 & \text { \edef } \backslash m s t @ t m p a\{\backslash c s n a m e ~ m s t @ l t s h a p e @ \backslash m a t h @ v e r s i o n \backslash e n d c s n a m e\} \% ~ \\ 2531 & \text { ledef } \backslash m s t @ t m p b\{\backslash c s n a m e ~ m s t @ s h a p e @ \backslash m a t h @ v e r s i o n \backslash e n d c s n a m e\} \% ~\end{array}\)
1.15 c : extending subdued to LGRgreek.
1.15f: subdueing math alphabets in a simpler way than in 1.15 e .
1.2 b : subdueing the activation of characters in math mode.
1.2 d : special treatment of the asterisk.
1.3d: extended LGRgreek mechanism of activation/restoration of Greek to all cases.
1.3j: use of \MTeverymathdefault, which includes \MTicinmath, but must be corrected then according to shape of letters and presence or absence of option frenchmath. We do only \(\backslash\) def \(\backslash m s t @ I T c o r r\{\backslash i f n u m \backslash f a m=\backslash m @ n e \backslash / \backslash f i\}\) and not \(\backslash M T I C i n m a t h ~ t o ~ n o t ~ o v e r w r i t e ~ s o m e ~ u s e r-~\) defined \MTeverymathdefault. Code for italic corrections or not according to letter shape is executed after \MTeverymathdefault which limits a bit user customizing possibilities, but if I moved it later, I would possibly have to put inside the \MTicinmath the check for it ot sl. Similary the \MTcustomgreek always executed (if not subdued).

MEMO: \MTeverymathdefault is executed also if in subdued mode but there is a \(\backslash \mathrm{MTev}\) erymathoff done next in the normal and bold version. It does \MTicinmath and \MTmathactivedigits which however are no-ops (only partly for the former, and for the latter always anyhow if no option activedigits) in subdude mode.
```

2532 \MTmathoperatorsobeymathxx
2533 \MTeverymathdefault
2534 \MTcustomizenewmcodes
2535 \@for\mst@tmpc:=it,sl\do{\ifx\mst@tmpc\mst@tmpa\MTnoicinmath\fi}%
2536 \ifmst@frenchmath
2537 \def\mst@ITcorr{\ifnum\fam=\m@ne\/\fi}%
2538 \@for\mst@tmpc:=it,sl\do{\ifx\mst@tmpc\mst@tmpb\MTnoICinmath\fi}%
2539 \fi

```
\(1.3 j\) has a stronger subdued which does \MTnormalprime, \MTnormalexists, \MTnormalforall rather than simply setting the skips to Omu. Note: \MTnormalprime is done as part of \(\backslash \mathrm{MTev}\) erymathoff.

The subdued mode does not undo the effect of the frenchmath option on uppercase Latin letters: they will use the same shape as digits and operator names! (This should have been made more prominent in user manual more than ten years ago, but is done only today 2023/12/28...).
\begin{tabular}{lc}
2540 & \ifmst@subdued \\
2541 & \ifx \(\backslash\) math@version \(\backslash\) mst@normalversionname \\
2542 & \mst@restorealphabets \\
2543 & \MTstandardgreek \\
2544 & \MTmathoperatorsdonotobeymathxx \\
2545 & \MTnormalexists \\
2546 & \MTnormalforall
\end{tabular}
1.4 has kept \MTmathstandardletters inside \MTeverymathoff but its action is now quite different from earlier situation as it resets mathcodes from active to normal status on the spot.
\begin{tabular}{ll}
2547 & \(\backslash\) MTeverymathoff \\
2548 & \(\backslash\) MTresetnewmcodes
\end{tabular}
\(1.3 t\) adds better compatibility with subdued mode for \imath/\jmath and perfect compatibility for the minus sign.
1.3 u extends this further to allow per-math-version meanings for them.
\begin{tabular}{lc}
2549 & \mst@subduedhbar \\
2550 & \mst@subduedinodot \\
2551 & \mst@subduedmathaccents \\
2552 & \mst@subduedminus \\
2553 & \else \\
2554 & \(\backslash i f x \backslash m a t h @ v e r s i o n \backslash m s t @ b o l d v e r s i o n n a m e ~\) \\
2555 & \(\backslash m s t @ r e s t o r e a l p h a b e t s\) \\
2556 & \MTstandardgreek \\
2557 & \MTmathoperatorsdonotobeymathxx \\
2558 & \MTnormalexists \\
2559 & \MTnormalforall \\
2560 & \MTeverymathoff \\
2561 & \MTresetnewmcodes \\
2562 & \mst@subduedhbar \\
2563 & \mst@subduedinodot
\end{tabular}
    \else
2567 \mst@setalphabets
1.3y addition for \MTcustomgreek under LGRgreeks option.

MEMO: the needed mathematical re-activation of letters when switching from normal or bold to a non-subdued math version has already been done above from the \MTicinmath which is part of \MTeverymathdefault.

MEMO: idem for digits under option activedigits.
2568 \expandafter\let\csname ifmst@greek@upper@up\expandafter\endcsname
2569 \csname ifmst@greek@\math@version @upper@up\endcsname
2570 \expandafter \(\backslash l e t \backslash c s n a m e ~ i f m s t @ g r e e k @ l o w e r @ u p \backslash e x p a n d a f t e r \backslash e n d c s n a m e ~\)
\csname ifmst@greek@\math@version @lower@up\endcsname
\MTcustomgreek
\mst@nonsubduedhbar
\mst@nonsubduedinodot
\mst@nonsubduedmathaccents
\mst@nonsubduedminus
\(\backslash f i\)
\(\backslash f i\)
2578 \fi
2579 \else
\(1.3 y\) addition for \MTcustomgreek under LGRgreek option.
MEMO: the mathematical activation of letters happened above from \MTeverymathdefault. Idem if activedigits for digits.
\begin{tabular}{|c|c|}
\hline 2580 & \expandafter\let\csname ifmst@greek@upper@up\expandafter\endcsname \\
\hline 2581 & \csname ifmst@greek@\math@version @upper@up\endcsname \\
\hline 2582 & \expandafter\let\csname ifmst@greek@lower@up\expandafter\endcsname \\
\hline 2583 & \csname ifmst@greek@\math@version @lower@up\endcsname \\
\hline 2584 & \MTcustomgreek \\
\hline 2585 & \mst@nonsubduedhbar \\
\hline 2586 & \mst@nonsubduedinodot \\
\hline 2587 & \mst@nonsubduedmathaccents \\
\hline 2588 & \mst@nonsubduedminus \\
\hline 2589 & \fi \\
\hline \multicolumn{2}{|l|}{2590 \}\%} \\
\hline \multicolumn{2}{|l|}{2591 \let\MathastextVersion\MTversion} \\
\hline \multicolumn{2}{|l|}{2592 \let\Mathastextversion\MTversion} \\
\hline 2593 \let & t\MTVersion\MTversion \\
\hline 2594 \let & \\mathastextversion\MTversion \\
\hline
\end{tabular}
\MTWillUse This is a preamble-only command, which can be used more than once, only the latest one counts. Sets up the math fonts in the normal and bold versions, as does \Mathastext.
```

2595 \newcommand*\MTWillUse [5] [] {
2596 \MTencoding{\#2}
2597 \MTfamily{\#3}
2598 \MTseries{\#4}
2599 \MTshape{\#5}
2600 \ifmst@italic\MTlettershape{\itdefault}\fi

```
```

2601 \edef\mst@tmp{\#1}
2602 \ifx\mst@tmp\empty\else\MTlettershape{\#1}\fi
2603 \Mathastext}
2604 \let\MathastextWillUse\MTWillUse
2605 \let\Mathastextwilluse\MTWillUse

```
\(\backslash\) Mathastext The command \Mathastext can be used anywhere in the preamble and any number of time, the last one is the one that counts.
In version 1.1 we have two fonts: they only differ in shape. The mtletterfont is for letters, and the mtoperatorfont for digits and log-like operator names. The default is that both are upright.

Starting with version 1.12, an optional argument makes \Mathastext act as the declaration of a math version, to be later used in the document.

Versions 1.15 x brought some adaptations related to the subdued option.
\(1.3 c\) adds a second optional parameter to inherit previous settings from another version; mostly done to inherit the bold version fonts for symbols and large symbols. This is done in \MTDeclareVersion.
 depending on whether subdued option in use). But we omit for this from \(\backslash\) MTicinmath the \(\backslash\) MTmathactiveletters and issue the latter during loading of package, hence allowing \MTmathstandardletters to be effective in the preamble.

I forgot to document that under subdued option the \Mathastext command without optional parameter does not any \SetSymbolFont etc... but it has a few other tasks to complete nevertheless.
1.3u fixes some long-standing bug that \(\backslash\) Mathastext did not repeat some font-encoding dependent things: they got done only once during package loading (things regarding the \hbar, \imath, the math accents and the minus sign). They are now part of the contents of \(\backslash\) Mathastext macro itself (which is executed during package loading).
\(1.3 y\) has refactored the LGRgreek associated math fonts.
2606 \def \(\backslash\) Mathastext \(\{\backslash\) @ifnextchar[\Mathastext@declare \(\backslash\) Mathastext@\}\% ]
2607 \def \(\backslash\) Mathastext@declare [\#1] \{\%
2608 \edef\mst@tmp\{\#1\}\%
2609 \ifx\mst@tmp\empty
\expandafter\@firstoftwo
2610 \else\expandafter\@secondoftwo
2612 \fi
2613 \Mathastext@
2614 \{\MTDeclareVersion[\mst@ltsh] \{\#1\}\{\mst@enc\}\{\mst@fam\}\{\mst@ser\}\{\mst@opsh\}\}\%
2615 \}\%
2616 \def \(\backslash\) Mathastext@ \{\%
2617 \mst@update@greeksh
2618 \edef\mst@encoding@normal\{\mst@enc\}\%
2619 \edef\mst@family@normal\{\mst@fam\}\%
2620 \edef\mst@series@normal\{\mst@ser\}\%
2621 \edef\mst@shape@normal\{\mst@opsh\}\%
2622 \edef \mst@ltshape@normal\{\mst@ltsh\}\%
2623 \edef\mst@itdefault@normal\{\itdefault\}\%
2624 \edef \mst@rmdefault@normal\{\rmdefault\}\%
2625 \edef\mst@sfdefault@normal\{\sfdefault\}\%

2626 \edef\mst@ttdefault@normal\{\ttdefault\}\%
2627 \edef \mst@boldvariant@normal\{\mst@bold\}\%
2628 \edef\mst@exists@skip@normal\{\mst@exists@skip\}\%
2629 \edef \mst@forall@skip@normal\{\mst@forall@skip\}\%
2630 \edef\mst@prime@skip@normal\{\mst@prime@skip\}\%
2631 \edef\mst@encoding@bold\{\mst@enc\}\%
2632 \edef\mst@family@bold\{\mst@fam\}\%
2633 \edef\mst@series@bold\{\mst@bold\}\%
2634 \edef\mst@shape@bold\{\mst@opsh\}\%
2635 \edef\mst@ltshape@bold\{\mst@ltsh\}\%
2636 \edef\mst@boldvariant@bold\{\mst@bold\}\%
2637 \edef\mst@itdefault@bold\{\itdefault\}\%
2638 \edef\mst@rmdefault@bold\{\rmdefault\}\%
2639 \edef \(\backslash m s t @ s f d e f a u l t @ b o l d\{\backslash s f d e f a u l t\} \%\)
2640 \edef \mst@ttdefault@bold\{\ttdefault\}\%
2641 \edef\mst@exists@skip@bold\{\mst@exists@skip\}\%
2642 \edef\mst@forall@skip@bold\{\mst@forall@skip\}\%
2643 \edef\mst@prime@skip@bold\{\mst@prime@skip\}\%
2644 \ifmst@subdued
Since 1.3 j this branch is actually almost superfluous, as entering normal or bold with \(\backslash \mathrm{MTver}\) sion does \MTnormalexists, \MTnormalforall, and \MTnormalprime. But some default values are needed if the user insists on issuing \MTexistsdoesskip, etc... nevertheless.

2645 \def\mst@exists@skip@normal\{0mu\}\%
2646 \def\mst@forall@skip@normal\{0mu\}\%
2647 \def\mst@prime@skip@normal\{0mu\}\%
2648 \def \mst@exists@skip@bold\{0mu\}\%
2649
    \def\mst@forall@skip@bold\{0mu\}\%
    \def \mst@prime@skip@bold\{Omu\}\%
\else
    \ifmst@italic
        \ifmst@frenchmath
            \mst@exists@muskip\mst@exists@skip\relax
            \mst@forall@muskip\mst@forall@skip\relax
                    \mst@prime@muskip\mst@prime@skip\relax
            \else
                \def \mst@exists@skip@normal\{0mu\}\%
                \def\mst@forall@skip@normal\{0mu\}\%
                \def \mst@prime@skip@normal\{0mu\}\%
                \def\mst@exists@skip@bold\{0mu\}\%
                \def \mst@forall@skip@bold\{0mu\}\%
                \def \mst@prime@skip@bold\{0mu\}\%
            \(\backslash f i\)
    \else
                \mst@exists@muskip\mst@exists@skip\relax
                \mst@forall@muskip\mst@forall@skip\relax
                    \mst@prime@muskip\mst@prime@skip\relax
    \fi
\fi

Here and elsewhere 1.3za has removed usage of an \ifmst@nonormalbold conditional which was added at 1.15f.
\(1.3 z a\) removes the \(1.15 f\) added conditional checks.
\ifmst@subdued\else
\SetSymbolFont\{mtletterfont\}\{normal\}\{\mst@encoding@normal\}\%
\SetMathAlphabet\{\Mathbf\}\{normal\}\{\mst@encoding@normal\}\%
\SetMathAlphabet \(\{\backslash\) Mathbf \(\}\{\) bold\} \(\{\backslash\) mst@encoding@bold\}\%
\SetMathAlphabet\{\Mathit\}\{normal\}\{\mst@encoding@normal\}\%

\{\mst@family@normal\}\%
\{\mst@boldvariant@normal\}\%
\(\{\backslash m s t @ 1 t s h a p e @ n o r m a l\} \%\)
\{\mst@family@bold\}\%
\(\{\backslash m s t @ b o l d v a r i a n t @ b o l d\} \%\)
\{\mst@ltshape@bold\}\% \{\mst@family@normal\}\% \{\mst@series@normal\}\% \{\mst@ltshape@normal\}\% \{V\asald \{\mst@series@bold\}\% \{\mst@ltshape@bold\}\% \(\{\backslash m s t @ f a m i l y @ n o r m a l\} \%\) \{\mst@series@normal\}\% \{\mst@shape@normal\}\% \{\mst@family@bold\}\% \{\mst@series@bold\}\% \{\mst@shape@bold\}\%
\(\{\backslash m s t @ f a m i l y @ n o r m a l\} \%\)
\{\mst@series@bold\}\%
\(\{\backslash m s t @ s h a p e @ n o r m a l\} \%\)
\{\mst@family@bold\}\%
\{\mst@series@bold\}\%
\{\mst@shape@bold\}\%
\{\mst@family@normal\}\%
\(\{\backslash\) mst@series@normal\}\%
\{\mst@itdefault@normal\}\%
\(\{\backslash\) mst@family@bold\}\%
\{\mst@series@bold\}\%
\(\{\backslash m s t @ i t d e f a u l t @ b o l d\} \%\)
\(\{\backslash m s t @ s f d e f a u l t @\) normal \(\} \%\)
\(\{\backslash m s t @ s e r i e s @ n o r m a l\} \%\)
\{\mst@shape@normal\}\%
```

\SetMathAlphabet{\Mathsf}{bold}{\mst@encoding@bold}%
{\mst@sfdefault@bold}%
{\mst@series@bold}%
{\mst@shape@bold}%
\SetMathAlphabet{\Mathtt}{normal}{\mst@encoding@normal}%
{\mst@ttdefault@normal}%
{\mst@series@normal}%
{\mst@shape@normal}%
\SetMathAlphabet{\Mathtt}{bold}{\mst@encoding@bold}%
{\mst@ttdefault@bold}%
{\mst@series@bold}%
{\mst@shape@bold}%
\i

```
\MathEulerBold 1.14c: We reset mteulervm and \MathEulerBold here as the variant for bold may have been changed by the user via \Mathastextboldvariant\{m\}; and we should keep this local to math versions.
\begin{tabular}{|c|c|}
\hline 2729 & \ifmst@needeuler \\
\hline 2730 & \(\backslash\) SetSymbolFont\{mteulervm\}\{bold\}\{U\}\{zeur\}\{\mst@boldvariant@normal\}\{n\}\% \\
\hline 2731 & \SetMathAlphabet \(\{\backslash\) MathEulerBold\} \{normal\}\% \\
\hline 2732 & \{U\}\{zeur\}\{\mst@boldvariant@normal\}\{n\}\% \\
\hline 2733 & \SetMathAlphabet \(\{\backslash\) MathEulerBold\} \{bold\}\% \\
\hline 2734 & \{U\}\{zeur\}\{\mst@boldvariant@bold\}\{n\}\% \\
\hline 2735 & \(\backslash f i\) \\
\hline 2736 & \ifmst@needsymbol\SetSymbolFont\{mtpsymbol\}\{bold\}\% \\
\hline 2737 & \{U\} \{psy\}\{\mst@boldvariant@bold\}\{n\}\% \\
\hline & \fi \\
\hline
\end{tabular}

LGRgreek* LGRgreek, LGRgreeks, selfGreek, and selfGreeks options.
selfGreek* \(\quad 1.3 y\) has refactored the LGRgreek associated math fonts.
\(1.3 z a\) adds the math alphabets \mathgreekitbold and \mathgreekupbold. And it executes this code also in subdued mode, because anyhow the symbolfonts mtgreekup and mtgreekit and associated alphabets have been declared also, at time of loading the package, so not doing it here means that effect of \MTgreekfont would be ignored; which was probably a bug. And by the way, documentation says \MTgreekfont has no effect under LGRgreeks and selfGreeks option so we need to enforce it here (for time being).


```

2741 \ifmst@LGRgreek

```


```

2743
2744
2745
2746
2747
2748
2749
2750

```
```

 {\mst@greekfont}{\mst@boldvariant@normal}{\MTgreekupdefault}%
 \SetMathAlphabet{\mathgreekupbold}{bold}{LGR}%
 {\mst@greekfont}{\mst@boldvariant@bold}{\MTgreekupdefault}%
 \SetMathAlphabet{\mathgreekitbold}{normal}{LGR}%
 {\mst@greekfont}{\mst@boldvariant@normal}{\MTgreekitdefault}%
 \SetMathAlphabet{\mathgreekitbold}{bold}{LGR}%
 {\mst@greekfont}{\mst@boldvariant@bold}{\MTgreekitdefault}%
 \else
 \ifmst@selfGreek
 \SetSymbolFont{mtselfGreekfont}{normal}{OT1}%
 {\mst@greekfont}{\mst@series@normal}{\mst@greek@ush}%
 \SetSymbolFont{mtselfGreekfont}{bold}{0T1}%
 {\mst@greekfont}{\mst@boldvariant@bold}{\mst@greek@ush}%
 \fi
 \fi
    ```
\(1.3 z a\) adds the log message in case of selfGreek option.
```

 \ifmst@subdued
 \else
 \mst@infoline{Latin letters in the `normal\string', resp. `bold\string',}%
 \mst@infoline{math versions are now set up to use the fonts}%
 \mst@infoline{\mst@encoding@normal/\mst@family@normal/\mst@series@normal
 \mst@ltshape@normal, resp.
 \mst@encoding@normal/\mst@family@normal/\mst@boldvariant@normal
 \mst@ltshape@normal.}%
 \ifmst@frenchmath\mst@infoline{(uppercase: \mst@shape@normal)}\fi
 \ifmst@LGRgreek
 \mst@infoline{Greek letters (upper:
 `\ifmst@greek@upper@up\MTgreekupdefault\else\MTgreekitdefault\fi\string',
 lower:
 `\ifmst@greek@lower@up\MTgreekupdefault\else\MTgreekitdefault\fi\string')
 will use font}%
 \mst@infoline{family `\mst@greekfont\string' (LGR).}%
 \else
 \ifmst@selfGreek
 \mst@infoline{Capital Greek letters (shape `\mst@greek@ush\string') will use font}
 \mst@infoline{family `\mst@greekfont\string' (OT1).}%
 \fi
 \fi
 \ifmst@nodigits\else
 \mst@infoline{Other characters (digits, ...) and \string\log-like names will be}%
 \mst@infoline{typeset with the \mst@shape@normal\space shape.}%
 \fi
 \i
 \ifmst@nohbar\else
 \mst@infoline{\string\hbar}%
 \mst@dothe@hbarstuff
 \mst@hbar@mvnormal\mst@ltbar@mvnormal\mst@encoding@normal
 \let\mst@hbar@mvbold\mst@hbar@mvnormal
    ```
```

2798 \fi
2799 \mst@dothe@inodotstuff\inodot\jnodot\mst@encoding@normal
2800 \let\mst@inodot@mvnormal\inodot
2 8 0 1 ~ \ l e t \ m s t @ i n o d o t @ m v b o l d \ i n o d o t
2802 \let\mst@jnodot@mvnormal\jnodot
2803 \let\mst@jnodot@mvbold\jnodot
2804 \ifmst@mathaccents
\mst@infoline{math accents}%
\mst@dothe@mathaccentsstuff{normal}\mst@encoding@normal
\i
\ifmst@nominus\else
\mst@infoline{minus as endash}%
\ifmst@endash
\mst@dothe@endashstuff\mst@minus@mvnormal\mst@varfam@minus@mvnormal
\mst@encoding@normal
\mst@dothe@endashstuff\mst@minus@mvbold\mst@varfam@minus@mvbold
\mst@encoding@normal
\else
\ifmst@emdash
\mst@dothe@emdashstuff\mst@minus@mvnormal\mst@varfam@minus@mvnormal
\mst@encoding@normal
\mst@dothe@emdashstuff\mst@minus@mvbold\mst@varfam@minus@mvbold
\mst@encoding@normal
\else
\mst@dothe@hyphenstuff\mst@minus@mvnormal\mst@varfam@minus@mvnormal
\let\mst@minus@mvbold\mst@minus@mvnormal
\let\mst@varfam@minus@mvbold\mst@varfam@minus@mvnormal
\fi
\fi
\i

```
1.3 zb moves this info line last and also explicitly mentions italic or frenchmath (here and at some other locations above).
```

\ifmst@subdued
\mst@infoline{Subdued `normal\string' and `bold\string' math versions.}%
\i
\ifmst@italic
\mst@infoline{The \ifmst@frenchmath frenchmath \else
italic \fi option is in effect.}%
\i
2836 \let\mathastext\Mathastext
2837 \Mathastext

```
2835 \}\%

Additional appropriate messages to the terminal and the log.
```

2838 \ifmst@eulergreek
2839 \mst@infoline{Greek letters will use the Euler font.}%
2840 \mst@infoline{Use \string\MathastextEulerScale{<factor>} to scale the
241 font.}%
2842 \ifmst@subdued

```
```

2843 \mst@infoline{(subdued mode: `normal\string' and `bold\string' math ver-
sions}%
2844 \mst@infoline{\space keep the default Greek letters).}%
2845 \fi
2846 \else
2847 \ifmst@symbolgreek
2848 \mst@infoline{Greek letters will use the PostScript Symbol font.}%
2849 \mst@infoline{Use \string\MathastextSymbolScale{<factor>} to scale the font.}%
2850 \ifmst@subdued
2851 \mst@infoline{(subdued mode: `normal\string' and `bold\string' math ver-
sions}%
2852 \mst@infoline{\space keep the default Greek letters).}%
2853 \fi
2854\fi\fi

```

Math sizes I took the code for \Huge and \hUGE from the moresize package of Christian Cornelssen
2855 \ifmst@defaultsizes \(\backslash e l\) se
2856 \providecommand \@xxxpt\{29.86\}
2857 \providecommand\@xxxvipt\{35.83\}
2858 \ifmst@twelve
2859 \def \Huge\{\@setfontsize \(\backslash\) Huge \@xxxpt\{36\}\}
2860 \def \HUGE\{\@setfontsize\HUGE\@xxxvipt\{43\}\}
2861 \mst@infoline\{\string\Huge\space and \string\HUGE\space have been (re)-defined.\}
2862 \else
2863 \def \HUGE\{\@setfontsize\HUGE\@xxxpt\{36\}\}
2864 \mst@infoline\{\string \(\backslash H U G E \backslash\) space has been (re)-defined.\}
2865 \fi
I choose rather big subscripts.
2866 \def \defaultscriptratio\{. 8333\(\}\)
2867 \def \defaultscriptscriptratio\{.7\}
2868 \DeclareMathSizes\{9\}\{9\}\{7\}\{5\}
2869 \DeclareMathSizes \(\{\backslash @ x p t\}\{\backslash @ x p t\}\{8\}\{6\}\)
2870 \DeclareMathSizes\{\@xipt\}\{\@xipt\}\{9\}\{7\}
2871 \DeclareMathSizes \(\{\backslash @ x i i p t\}\{\backslash @ x i i p t\}\{10\}\{8\}\)
2872 \DeclareMathSizes\{\@xivpt\}\{\@xivpt\}\{\@xiipt\}\{10\}
2873 \DeclareMathSizes \(\{\backslash @ x v i i p t\}\{\backslash @ x v i i p t\}\{\backslash @ x i v p t\}\{\backslash @ x i i p t\}\)
2874 \DeclareMathSizes\{\@xxpt\}\{\@xxpt\}\{\@xviipt\}\{\@xivpt\}
2875 \DeclareMathSizes \(\{\backslash @ x x v p t\}\{\backslash @ x x v p t\}\{\backslash @ x x p t\}\{\backslash @ x v i i p t\}\)
2876 \DeclareMathSizes \(\{\backslash @ x x x p t\}\{\backslash @ x x x p t\}\{\backslash @ x x v p t\}\{\backslash @ x x p t\}\)
2877 \DeclareMathSizes\{\@xxxvipt\}\{\@xxxvipt\}\{\@xxxpt\}\{\@xxvpt\}
2878 \mst@infoline\{mathastext has declared larger sizes for subscripts.\}
2879 \mst@infoline\{To keep LaTeX defaults, use option `defaultmathsizes\string'.\}
2880 \fi
\MTeverymathoff \(1.3 i\) 2016/01/06 Compatibility patch with \url from url.sty and \url/\nolinkurl from hyperref.sty.
\(1.3 j 2016 / 01 / 15\) renamed the macro from \MTactivemathoff to \MTeverymathoff, as it is not exclusively a matter of math active characters due to \(\backslash\) MTeasynonlettersdonotobeymathxx.
1.3o 2016/05/03 adds \MTdonotfixfonts. Operant with LuaAATEX only.
\(1.42024 / 07 / 20\) keeps the \MTmathstandardletters as a component of \MTeverymathoff. It was checked that url and hyperref do not change mathcodes of ascii letters prior to location where \(\backslash M T e v e r y m a t h o f f\) gets executed, so nothing is overwritten, despite the new mode of action of \MTmathstandardletters.
1.4 has \MTmathstandarddigits and inserts it into \MTeverymathoff.

2881 \newcommand*\MTeverymathoff \{\%
2882 \MTnormalasterisk
2883 \MTnormalprime
2884 \MTnonlettersdonotobeymathxx
2885 \MTeasynonlettersdonotobeymathxx
2886 \MTmathstandardletters
2887 \MTmathstandarddigits
2888 \MTdonotfixfonts
2889 \}\%
2890 \AtBeginDocument \{\%
2891 \@ifpackageloaded\{hyperref\}
2892 \{\def \Hurl\{\begingroup \(\backslash M T e v e r y m a t h o f f \backslash U r l\}\}\)
2893 \{\@ifpackageloaded\{url\}\{\DeclareUrlCommand\url\{\MTeverymathoff\}\}\{\}\}\%
2894 \}\%
\MTeverymathdefault 1.3 j 2016/01/15 Customizable command which gets executed by \MTversion except when switching to normal/bold if option subdued. The included \MTicinmath does \MTmathactiveletters which will also activate the math skips around letters.

The \MTeverymathdefault does not include \MTmathoperatorsobeymathxx as the latter does not correspond to something done during execution of \the\everymath.

Should I put \let\newmcodes@\mst@newmcodes@ here too ? No, it is not done at everymath.
During the loading, the (non subdued) package does \MTactiveasterisk (if option asterisk), \MTprimedoesskip, \MTeasynonlettersobeymathxx and \MTmathactiveletters. There is some code at begin document for decisions about italic corrections, this code does not emit again \MTmathactiveletters, hence a \(\backslash M T m a t h s t a n d a r d l e t t e r s ~ i n ~ t h e ~ p r e a m b l e ~ i s ~ n o t ~ o v e r-~\) ruled. Furthermore the at begin document code will not overrule user emitted \MTnoicinmath etc... commands in the preamble.

And user can employ \MTnormalexists, etc..., from inside the preamble, it will not be overruled (as it is delayed at begin document to after mathastext dealings).
1.30 2016/05/03 adds \MTfixfonts. Operant with LuaLATEX only.
\(\backslash\) MTmathactivedigits of 1.4 is a no-op except under option activedigits.
2895 \newcommand*\MTeverymathdefault \{\%
2896 \MTactiveasterisk
2897 \MTprimedoesskip
2898 \MTeasynonlettersobeymathxx
2899 \MTicinmath
2900 \MTmathactivedigits
2901 \MTfixfonts
2902 \}\%
Things to do last "at. Aedgasnadkgnifematrt change here that mathematical activation of ascii letters is now not incorporated into the \everymath and \everydisplay.

\footnotetext{
2903 \ifmst@everymath
2904 \AtBeginDocument\{\%
}

3\%
\everydisplay\expandafter\{\the\everydisplay \mst@the\mst@do@nonletters \let\mst@the\@gobble \mst@theeasy\mst@do@easynonletters \let\mst@theeasy\@gobble 3\%
\}
2914 \fi
1.3j: moved here to be executed at begin document (and not from inside \Mathastext@.) The \MTeverymathoff does: \MTnormalasterisk, \MTnormalprime, \MTnonlettersdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTmathstandardletters.
1.3 m : doing \MTmathactiveletters in subdued mode immediately after \begin\{document\} } resulted in errors because \mst@itcorr had been left undefined. We thus add \MTnoicinmath to the subdued initialization.

Since \(1.3 n\) there is \(\backslash M T r e s e t n e w m c o d e s ~ w h i c h ~ n e e d s ~ \ m s t @ o r i g i n a l n e w m c o d e s @, ~ i t s e l f ~ d e f i n e d ~\) at begin document. Thus we have wrapped the whole thing in \AtEndOfPackage (at \(1.3 u\) whole code directly moved at end of package).

And \(1.3 p\) adds here \(\backslash\) MTcustomizenewmcodes which had been regrettably forgotten by \(1.3 n\).
\(1.3 t\) adds some extras to handle correctly the minus sign and dotless \(i\) and \(j\) in subdued mode, even in case of usage with fontspec.
\(1.3 u\) similarly lets math accents be correctly subdued.
1.3 v adapts to \hbar and math accents now being robust with IATEX 2019-10-01 or later.
1.3w pays attention to the fact that \hbar may well be a \mathchar and not a robust macro! And no need to worry about \hbar<space> finally in revised code.
```

2915 \AtBeginDocument{%
2916 \MTcustomizenewmcodes
2917 \let\mst@original@hbar\hbar
2918 \let\mst@original@imath\imath
2919 \let\mst@original@jmath\jmath
2920
@tfor\@tempa:={grave}{acute}{check}{breve}{bar}%
{dot}{ddot}{mathring}{hat}{tilde}%
\do
{\expandafter\let\csname mst@original@\@tempa\expandafter\endcsname
\csname \@tempa\endcsname
\expandafter\let\csname mst@original@\@tempa\space\expandafter\endcsname
\csname \@tempa\space\endcsname
}%
\ifmst@XeOrLua
\edef\mst@subduedminus
{\mst@Umathcodenum`\noexpand\-=\the\mst@Umathcodenum`\-\relax}%
\else
\edef\mst@subduedminus{\mathcode`\noexpand\-=\the\mathcode`\-\relax}%
\i
\ifmst@subdued
\MTeverymathoff
\MTresetnewmcodes
\MTnoicinmath

```
```

2938 \MTmathoperatorsdonotobeymathxx
2939 \let\inodot\imath
2940 \let\jnodot\jmath
2941 \mst@subduedminus
2942 \else
2943
\mst@nonsubduedhbar

```
1.3 v needs \mst@nonsubduedmathaccents to get executed later (see code comments for \mst@dothe@mathaccentsstuff).

\section*{2944 \mst@nonsubduedminus}
\(1.3 \mathrm{j}:\) an earlier version of this code was earlier part of \(\backslash\) Mathastext@. As we are now in \(\backslash\) AtBeginDocument we try to be careful not to overwrite \(\backslash\) MTicinmath, \(\backslash\) MTnoicinmath, \(\backslash M T i\) calsoinmathxx, ... if issued by the user in the preamble, though. And we do not execute \(\backslash\) MTmathactiveletters, it is issued by the package at loading time in order to allow user to cancel it if desired from inside the preamble.
```

2945 \ifx\mst@itcorr\@undefined
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
957 \fi
2958 \fi
2959 }%
2960\AtEndOfPackage{\AtBeginDocument{\ifmst@subdued\else\mst@nonsubduedmathaccents\fi}}%

```
subdued 1.15: The subdued code was initiated in May 2011. I returned to mathastext on Sep 24, 2012, and decided to complete what I had started then, but in the mean time I had forgotten almost all of the little I knew about \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) macro programming.

The point was to extract the data about how are 'letters' and 'operators' in the normal and bold versions, through obtaining the math families of ' \(a\) ' and ' 1 ', respectively \({ }^{1}\). Due to the reassignements done for characters by mathastext I also had decided in 2011 that the OT1 encoding, if detected, should be replaced by T1
\({ }^{1}\) but the euler package for example assigns the digits to the letters symbol font...
\(1.15 \mathrm{~d}:\) Oct 13,2012 . The \mathcode thing has to be used with care under Unicode engines. Unfortunately the \luatexUmathcode macro is helpless as it is not possible to know if it will return a legacy mathcode or a Unicode mathcode. On the other hand the much saner \(\backslash\) XeTeXmathcodenum always return a Unicode mathcode.

UPDATE for mathastext 1.3 (2013/09/02): since the release of lualatex as included in TL2013, \luatexUmathcodenum behaves as \XeTeXmathcodenum so mathastext 1.3 treats identically under both unicode engines the equal and minus signs (and the vertical bar).
1.15e: Oct 22, 2012. I add the necessary things to also subdue the \mathbf, \mathit, \mathsf and \mathtt macros (previous version only took care of the symbol alphabets \mathnormal and
\mathrm.) [update: \(1.15 f\) does that in a completely different and much simpler way] Notice that the package defines a \mathnormalbold macro, but it will not be subdued in the normal and bold math versions.
1.15f: Oct 23, 2012. The previous version of the code queried the math family of a, respectively 1 , to guess and then extract the fonts to be reassigned to mtletterfont and mtoperatorfont (which is done at the end of this .sty file). The present code simply directly uses letters and operators (so mathastext could not subdue itself... if it was somehow cloned), but obtains indeed the corresponding font specifications in normal and bold in a cleaner manner. But it is so much shorter (and avoids the LualATEX problem with \luatexUmathcode). Anyhow, for example the euler package puts the digits in the letters math family! so the previous method was also error prone. In fact there is no way to do this subdued mechanism on the basis of the legacy code of mathastext. The only way is to rewrite entirely the package to query all mathcodes of things it changes in order to be able to revert these changes (and one would have to do even more hacking for \mathversion\{normal\} and not only \MTversion\{normal\} to work).
1.15f: and also I take this opportunity to do the subdued math alphabets things in a much much easier way, see below.
1.3s 2018/08/21: I have half-forgotten the reasons for modifiying the font encoding to current \encodingdefault, but at any rate this should not be done in a fontspec context, encoding default being (now) TU it is very unlikely modifying from TU or to TU from something else will do any good. I add workaround here for case of fontspec being detected via the \encodingdefault setting.
\(1.3 \mathrm{t} 2018 / 08 / 22\) : the 1.3 s fix erroneously removed the 0T1->T1 replacement in TU context.
1.3u: the whole thing will only get executed At Begin Document.

I realize extremely late ( \(2023 / 12 / 28\) ) I never said explicitly anywhere it seems in the code comments that the frenchmath option effect is not subdued: the uppercase Latin letters \mathcode's are not changed back to their defaults at start of a subdued document or when going to the subdued normal math version! Time to do so before the package enters resolutely dormant maintenance status soon... and I end up really forgetting enything and having wrong expectations on what is the behavior of the package.
\begin{tabular}{|c|c|}
\hline & fmst@subdued \\
\hline 2962 & \(\backslash\) AtBeginDocument\{\% \\
\hline 2963 & \def \mst@reserved\#1\getanddefine@fonts\symletters\#2\#3\@nil\{\% \\
\hline 2964 & \def\mst@normalmv@letter\{\#2\}\}\% \\
\hline 2965 & \expandafter\mst@reserved\mv@normal\@nil \\
\hline 2966 & \def\mst@reserved\#1\getanddefine@fonts\symletters\#2\#3\@nilf\% \\
\hline 2967 & \def \mst@boldmv@letter\{\#2\}\}\% \\
\hline 2968 & \expandafter\mst@reserved\mv@bold\@nil \\
\hline 2969 & \def\mst@reserved\#1\getanddefine@fonts\symoperators\#2\#3\@nil\{\% \\
\hline 2970 & \def \mst@normalmv@operator\{\#2\}\}\% \\
\hline 2971 & \expandafter\mst@reserved\mv@normal\@nil \\
\hline 2972 & \def\mst@reserved\#1\getanddefine@fonts\symoperators\#2\#3\@nil\{\% \\
\hline 2973 & \def \mst@boldmv@operator\{\#2\}\}\% \\
\hline 2974 & \expandafter\mst@reserved\mv@bold\@nil \\
\hline 2975 & \edef\mst@tmp@enc\{\mst@encoding@normal\}\% \\
\hline 2976 & \def\mst@reserved\#1/\#2/\#3/\#4/\{\gdef \mst@debut\{\#1\}\gdef\mst@reste\{\#2/\#3/\#4\}\}\% \\
\hline 2977 & \begingroup\escapechar\m@ne \\
\hline 2978 & \(\ x d e f \backslash\) mst@funnyoti\{\expandafter\string\csname OT1\endcsname\}\% \\
\hline 2979 & \expandafter \(\backslash\) expandafter \(\backslash\) expandafter \\
\hline 2980 & \mst@reserved\expandafter\string\mst@normalmv@operator/\% \\
\hline
\end{tabular}

Preamble-only... "Only preamble" restrictions. I was way too much obedient back in 2011, particularly taking into account how much of a pain it has been and still is that things such as \DeclareMathSymbol or \DeclareMathAccent are preamble-only. But keeping this for time being, however not using \@onlypreamble which breaks one's heart when tracing to see how much place it takes, so we do it in one go.
3014 \expandafter \gdef \expandafter \@preamblecmds \expandafter \{\@preamblecmds
3015 \do\MTitgreek
3016 \do\MTupgreek
3017 \do\MTitGreek
3018 \do\MTitGreek
3019 \do\Mathastextitgreek
3020 \do\Mathastextupgreek
3021 \do\MathastextitGreek
3022 \do\MathastextitGreek
3023 \do\MTgreekfont

3024 \do\Mathastextgreekfont
3025 \do\MTgreekupdefault
3026 \do\MTgreekitdefault
3027 \do\MTDeclareVersion
3028 \do\MathastextDeclareVersion
3029 \do\MTWillUse
3030 \do\MathastextWillUse
3031 \do\Mathastextwilluse
3032 \do\Mathastext
3033 \do\mathastext
3034 \}
3035 \immediate\write\m@ne\{\}
\(3036 \backslash\) PackageInfo\{mathastext\}\{Loading is complete. \space You can now use \string \(\backslash\) Mathastext 3037 \space to\MessageBreak
3038 modify the normal and bold math versions. \space
3039 Use it \(\backslash\) MessageBreak
3040 with optional argument or use \string\MTDeclareVersion\space
3041 to\MessageBreak
3042 declare additional math versions\@gobble\}
3043 \endinput```


[^0]:    Documentation generated from the source file with Time-stamp: <26-07-2024 at 11:21:35 CEST>.

[^1]:    ${ }^{1}$ let's do as if we did not know the excellent txfonts package which employs Times for text and has a very complete math support, including many additional mathematical glyphs in comparison to the CM fonts. This was written many years ago, nowadays, newtx is the successor of txfonts.
    ${ }^{2}$ Bob Tennent, Support for using Libertinus fonts with $4 T_{E} X / p d f A T_{E} X$, https://ctan.org/pkg/ libertinus-type1.
    ${ }^{3}$ Michael Sharpe, A Type 1 font and $4 T_{E} X$ support for Libertinus Math, https://ctan.org/pkg/ libertinust1math.

[^2]:    ${ }^{4}$ Bob Tennent, Support for using Libertinus fonts with $A T_{E} X / p d f L T_{E} X$, https://ctan.org/pkg/ libertinus-type1.

[^3]:    ${ }^{5}$ The document used the cmtt, cmss, txr, as well as LibertinusSerif-TLF font families in LGR encoding. The first two are available (with no need to load explicitly any package in the document) if the LATEX installation provides the cbfonts (or cbgreek-complete) \& babel packages, and the LGR encoded txr font (again no package loading is necessary) is part of the files of the txfontsb package. For LibertinusSerif-TLF, the files of the libertinus-type1 package must be present.
    ${ }^{6}$ Daniel Benjamin Miller, A blacker Type 1 version of Computer Modern, with multilingual support, https://ctan.org/pkg/mlmodern. I have added to the preamble \DeclareEncodingSubset\{TS1\}\{mlmtt\}\{0\} to circumvent some $\operatorname{AT} T_{E X}$ complaints about \textasciigrave (this is a widespread problem when not using default fonts) related to occurrences of the backtick character in verbatim displays.
    ${ }^{7}$ Bob Tennent, Support for using Libertinus fonts with $A T_{E} X / p d f E T_{E} X$, https://ctan.org/pkg/ libertinus-type1.
    ${ }^{8}$ Michael Sharpe, A Type 1 font and $A T_{E} X$ support for Libertinus Math, https://ctan.org/pkg/libertinust1math. Note that it is then highly advantageous to use latex+dvipdfmx and not pdflatex for reasons of PDF file size.
    ${ }^{9}$ this means "more than one."
    ${ }^{10}$ I thank in particular Tariq Perwez and Kevin Klement for their kind remarks (chronological order).
    ${ }^{11}$ more precisely stated, the value of \itdefault is used.
    ${ }^{12}$ more precisely stated, the value of \shapedefault is used.

[^4]:    ${ }^{13}$ The minus sign is now perfectly subdued, because its original mathcode is stored and restored; this was only way to handle the case with Unicode engines where the math operator font is in a classic TEX encoding, but the minus sign is configured by mathastext to use a Unicode en-dash or minus character in non-subdued math versions.

[^5]:    ${ }^{14}$ The subdued mode does extinguish in the normal and bold math versions the action of options selfGreek, eulergreek, and symbolgreek (previously only LGRgreek was subdue-able).
    ${ }^{15}$ The \imath and \jmath now obey the subdued regime.
    ${ }^{16}$ Also \hbar and the math accents (see mathaccents option) obey the subdued regime.
    ${ }^{17}$ For example the default CM and its replacement Latin Modern for european languages are (transparently to the user) extended with LGR encoded fonts from the cbfonts (cbgreek-complete) $\mathrm{T}_{\mathrm{E}} \mathrm{XLive}$ package.

[^6]:    ${ }^{18}$ The subdued option, described next, acts a bit otherwise, it forces, contrarily to its usual low-key character, the replacement of OT1 by T1 for the fonts ultimately used with letters and digits in math mode.
    ${ }^{19} \mathrm{v} 1.2$ adds a customizable tiny space before ' to separate it from the previous letter, this is really needed when using upright letters in math mode with the CM derivative glyph.Compare $f^{\prime}$ with $f^{\prime}$.

[^7]:    ${ }^{20}$ To the experts: there is a long story here that \newmcodes@ hardcodes the font, that it was not compatible with Unicode engines, that during some time (2013-2016) lualatex-math fixed that and very recently amsopn.sty $2016 / 03 / 08 \mathrm{v} 2.02$ also, so now lualatex-math 1.6 does nothing as it is already fixed "upstream" in amsopn. sty, but anyhow in both cases, this still hardcoded the font, so finally mathastext does the right thing from its point of view. See the code comments for more, there is an issue here with LuaA ${ }^{A} T_{E} X$ not applying the curly right quote contrarily to $X_{\exists}{ }^{A} T_{E} X$.

[^8]:    ${ }^{21}$ I.e., the \grave etc... control sequences will, in math versions with an OpenType mathastext-ified font, expand to macros holding their initial meanings, unmodified by mathastext, which was in force at the \begin\{document\}.

[^9]:    ${ }^{23}$ Antoine Missier, Typesetting mathematics according to French rules, https://ctan.org/pkg/ frenchmath.
    ${ }^{24}$ The package mismath also by the Antoine Missier may probably be used with mathastext, but not in a fully inter-operative way, as the two packages conflict on some aspects. Reports welcome, we have not tested this.

[^10]:    ${ }^{25}$ Morten HøGHOLm, Lars MADSEN and the $\operatorname{IAT} \mathrm{EX} 3$ project, Mathematical tools to use with amsmath, https://ctan.org/pkg/mathtools. As explained elsewhere in this documentation always load mathastext after mathtools.
    ${ }^{26}$ Harald Harders, Print numbers with separators and exponent if necessary, https://ctan.org/pkg/ numprint.
    ${ }^{27}$ Antoine MiSSIER, Comma for decimal numbers, https://ctan.org/pkg/decimalcomma.
    ${ }^{28}$ Alexander I. Rozhenko, Use comma as decimal separator in mathematics, https://ctan.org/ pkg/ncccomma.

[^11]:    ${ }^{29}$ Antoine MissIER, Intelligent brackets, https://ctan.org/pkg/ibrackets.
    ${ }^{30}$ Conrad Kosowsky, Use TrueType and OpenType fonts in math mode https://ctan.org/pkg/ mathfont.
    ${ }^{31}$ Andrew Gilbert Moschou, Specify arbitrary fonts for mathematics in $X_{\exists} T_{E} X$ https://ctan.org/ pkg/mathspec.
    ${ }^{32}$ Will Robertson, et al., Unicode mathematics with support for $X e T e X$ and LuaTeX https://ctan . org/pkg/unicode-math.

[^12]:    ${ }^{33}$ Thanks to Tobias Brink who asked for this feature.

[^13]:    ${ }^{34}$ It is only years after initial release that I became aware that package mathtools used $\backslash$ MT_ prefix (with an underscore as shown) for most internal constructs, and sometimes \MT@, and those can not clash with our $\backslash \mathrm{MT}[\mathrm{a}-\mathrm{z} \mid \mathrm{A}-\mathrm{Z}]$ for public commands and $\backslash \mathrm{mst} @$ for internal macros. They do have however user commands \MTFlushSpaceAbove and \MTFlushSpaceBelow, but nothing else hence some retroactive relief.

[^14]:    ${ }^{35}$ math versions are discussed in the document fntguide.pdf from your $T_{\mathrm{E}} \mathrm{X}$ distribution.
    ${ }^{36}$ When not using math versions at all (so not using subdued mode either) another way to achieve distinct fonts in text and math is naturally to modify the document text font after having loaded mathastext (or after last usage of \Mathastext without optional argument). Another way is to use \MTfamily, \MTencoding, \MTseries, \MTshape, \MTlettershape in the preamble before a call to \Mathastext which will configure math fonts without having modified the document text
     to what was recorded as math font by the \Mathastext call in the preamble (as said above, when not using subdued option).

[^15]:    ${ }^{37}$ may typically give a 'too many math alphabets' error message.
    ${ }^{38}$ sometimes one needs to look in the . sty file of the font package to figure out the font name (it is rarely as here with epigrafica, the same as the package name), and, if one does not know the arcanes of finding .fd files in one's $T_{E X}$ distribution, one should look at the log file of a test document to see if for example T1 is available for that font; for epigrafica it is not, only OT1 and LGR are possible.

[^16]:    ${ }^{39}$ No check is done of pre-existing such math symbol, they will be replaced by the mathastext definition with no warning. If they happen to be pre-defined as $\mathbb{A} T_{E} X$ commands, not as math symbols, errors will happen during the loading of mathastext.

[^17]:    ${ }^{40}$ Technically, formerly two symbol fonts were declared, one for the lowercase Greek letters and one for the uppercase Greek letters; now those are dropped and replaced by two symbol fonts, one for 'italic' Greek letters, the other for 'upright' Greek letters.

[^18]:    ${ }^{41}$ It was new in 2013 indeed. Not so much new now, but it is never too late to try it out.

[^19]:    ${ }^{42}$ let's be honest, we are lying here about what exactly the first of these is bounding; this is explained later!
    ${ }^{43}$ we used simply $\$ \backslash$ mathit $\{f(x)\} \$$.
    ${ }^{44}$ these values are for the Latin Modern fonts of course.
    ${ }^{45}$ here we give correctly the bounding box for the math italic $f \ldots$ without its italic correction!

[^20]:    ${ }^{46}$ there are also some tiny vertical displacements of the sub- and superscripts.

[^21]:    ${ }^{47}$ we just use $\$ \backslash$ mathrm\{f_i^i $\} \$$.
    ${ }^{48}$ the situation is rather ironical! by the way, the warnings in subsubsection 1.8 .4 with $\$ x^{\wedge} ? \$$ or similar are less of an issue here, because the letter is only followed by $\backslash /$ and anyhow the whole is put by mathastext within group braces, so no surprises with $\$ x^{\wedge} y \$$ or $\$ \backslash$ mathbin $x \$$. Nevertheless it is still true that (in math mode only) the letters a-z, A-Z, expand to composite objects, something which
    

[^22]:    ${ }^{49}$ 2016/11/04: the situation hasn't changed, at least on current TL2016. 2022/10/29: no change with current TL2022.
    ${ }^{50}$ the derivative glyph from the txfonts math symbols adapts itself better to an upright letter, no skip seems to be needed then.

[^23]:    ${ }^{51}$ contrarily to the next feature, this one is not likely to create incompatibilities with other packages, so it is activated by default.
    ${ }^{52} \# \$ \% \&$ obey the math alphabets since the initial version of mathastext; the dot ., the slash /, the vertical bar \| and the backslash \do not have specific spacings inserted by $\mathrm{T}_{\mathrm{E}} \mathrm{d}$ around them, and the procedure is then activated by default since 1.2 for these characters as they are 'easy non-letters'. But for \mid and \setminus which are \| and \with special spacing (of type \mathrel and \mathbin resp.) the activation requires \MTnonlettersobeymathxx.

[^24]:    ${ }^{53}$ The complete truth is only to be found in source code. Here are some extra details: The dollar sign and the curly braces are not tested for mathematical or catcode activation. The $*$ is tested as are the "hard" non-letters, except under option everymath. On the other hand \ast will be modified independently of what is decided for *. Comprenne qui pourra.
    ${ }^{54}$ This last example uses the \mathnormalbold additional alphabet defined by mathastext.
    ${ }^{55}$ Let me recall that braces will anyhow not be handled at all by mathastext if the document font

[^25]:    encoding is OT1，except under option alldelims．
    changed：${ }^{56}$ Prior to 1.4 ，there was no equivalent to $\backslash M T$ commandletter $\langle l e t t e r\rangle$ ．An internal macro \mst＠〈letter〉 stood for what is denoted now \MTmathcharletter〈letter〉，but required a \protected if redefined as it was submitted to an \edef during processing．

[^26]:    ${ }^{58} \backslash$ Mathastext updates also the font and shapes for the Greek letters（LGRgreek option），and the skips to be inserted after the symbols $\forall$ and $\exists$ ，see infra．
    ${ }^{59}$ The allowed version names are as for the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ \DeclareMathVersion macro．Do not use $\backslash$ Mathastext［foo］with foo equal to＂normal＂or＂bold＂；this is already taken care of by the initial loading of the package or a later command \Mathastext without any optional argument． And it will be rejected．

[^27]:    ${ }^{60}$ These commands exist also with long names：\Mathastextencoding，etc．．．The same applies to the other commands mentioned in this section．
    ${ }^{61}$ I do not especially recommend to use this in real life！
    ${ }^{62}$ more precisely，the shape is the latest value passed in one of the previously used package com－ mands to specify the shape of letters，or the \itdefault of the time of loading the package．

[^28]:    ${ }^{63}$ The horizontal skips for letter h from \MTsetmathskips are ignored for \hbar.
    ${ }^{64}$ The \hbar redefinition is canceled in normal and bold math versions under the subdued option.

[^29]:    ${ }^{65}$ option asterisk is also required to treat the $*$. Recall from subsubsection 1.8.4 that the asterisk in math mode (also when using the control sequence last) appears then to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to be a composite object.

[^30]:    ${ }^{66}$ There ia always an exception to a good rule, and here it is: only with LuaIATEX engine, a certain command is executed as part of \everymath. For details see \MTfixfonts.

[^31]:    Note that contrarily to the \MTexistsskip, \MTforallskip, and \MTprimeskip commands described next, these extra skips (which may be specified in the preamble) are not recorded in

[^32]:    ${ }^{67}$ It is even better if compiled via latex＋dvipdfmx．
    ${ }^{68}$ Christian Cornelssen，Allows font sizes up to $35.83 p t$ ，https：／／ctan．org／pkg／moresize．

[^33]:    ${ }^{69}$ Under this option \MTversion\{normal\} and \MTversion\{bold\} execute automatically \MTmathoperatorsdonotobeymathxx, \MTeasynonlettersdonotobeymathxx, \MTnonlettersdonotobeymathxx, \MTmathstandardletters.
    ${ }^{70}$ Since 1.3 y , in presence of the LGRgreek option in addition to italic, the $\backslash \mathrm{MTgree}$ itdefault shape is then used for lowercase Greek letters and \MTgreekupdefault for uppercase.
    ${ }^{71}$ Under LGRgreek and since 1.3 y , the $\backslash M T g r e e k u p d e f a u l t$ is used for Greek letters if no other option such as itgreek was employed.

[^34]:    ${ }^{72}$ Alexander I. Rozhenko, Use comma as decimal separator in mathematics, https://ctan.org/ pkg/ncccomma.

[^35]:    ${ }^{73}$ There is a 'feature' of babel-french that the effect of package ncccomma is canceled if one switches from French to English; and switching back to French does not reenact it. For background on this issue see https://github.com/latex3/babel/issues/190.

    This does not apply to decimalcomma 1.3 or later.
    ${ }^{74}$ Antoine MISSIER, Comma for decimal numbers, https://ctan.org/pkg/decimalcomma.

[^36]:    ${ }^{75}$ With the option symbolmisc, the asterisk is picked from the Symbol font, and the amount of lowering is non-customizable; however if a math alphabet command is used, the asterisk is then again from a text font and the lowering will be as specified by \MTlowerast.
    ${ }^{76}$ In a hopefully safe way, for example $\$ \backslash$ label $\{$ eq* $*\} \$$ is ok.

[^37]:    ${ }^{77}$ in this very special situation of option nosmalldelims, the braces are an exception to this rule and they require both of \MTnonlettersobeymathxx and $\backslash M T e x p l i c i t b r a c e s o b e y m a t h x x ~ f o r ~$ being picked up from the text font when not used as delimiters.
    ${ }^{78}$ You can check the documentation of the https://ctan.org/pkg/lgrmath package for how to find out systematically which fonts are available on your system in LGR encoding.

