Abstract

This is the preliminary documentation for the pilot release of GeX. GeX is the
most rapidly evolving part of VIEX; more detailed documentation and more
GeX power are forthcoming.

Chapter 1

Why GeX?

Starting with version 6.2, VIEX’s PDF backend includes an integrated PostScript
processor. This allows easy one-pass handling of

e Encapsulated PostScript files (. eps).
e Direct support for PSTricks and PSFrag.

e Other kinds of inline PostScript code, including feed-back of information
the TEX processor.

GeX shortcuts the lengthy model of

.eps
4
tex — dvi — .ps — .pdf

T

inline.ps

While . eps inclusion has been previously supported in VIEX via GhostScript
calls, GeX offers much better performance and output quality. Inline PostScript
inclusion, on the other hand, is a totally new feature: the FastDraw support in
the previous versions offered only a very a limited subset of PostScript.

The advantage of GeX over GhostScript should be apparent from the fol-
lowing picture

ad RUNNING o

[SPRINTS

T I TAI N

ARSI bas Vaud]
Here we include the same .eps file with both GeX and GhostScript (a new
\special{GS+}/\special{GS-} was added to VTEX just for the sake of this
comparison). Besides being cleaner, the picture on the left (GeX output) takes

less space and takes less time to compile.
This is the TEX code used to place the pictures:

\hbox to \textwidth{
| I\includegraphics[width=5cm] {olympics.eps} \hss
\special{GS+}/,
\includegraphics[width=5cm] {olympics.epsl}
\special{GS-1}%
1%
}

The . eps inclusion is likely to be the main tnitial application of GeX. However,
in our view it is the inline PostScript which would lead to new and interesting
applications.

1.1 Why call it GeX?

The GeX name [pronounced g-e-k-s| stands for Graphics EXtensions.

While the current extensions are generally compatible with the PostScript
language, GeX is intended to be a TgX-resident extension, not an Acrobat
clone. Even in the current implementation there are facilities for communication
between TEX and PostScript; these facilities are likely to be further developed.
While it is our intention to stay PostScript-compatible to a degree needed for

.eps and inline PostScript support we envision further enhancing GeX with
features that are decisively non-PostScript.

Chapter 2

Using GeX

To enable GeX, use the

-0x
switch on the VIEX command line. GeX initialization will take place only when
GeX is explicitly called for the first time. Notice that GeX works only in the
PDF backend mode; in other modes the switch will be ignored.
Note: The -o0x2 switch will initialize GeX in Level II mode. Not all Level II
operators are currently supported; so the use of this switch is somewhat exper-
imental. See Language level.
VTEX 6.43 adds an integer register \gexmode; it will return 0 if GeX is not
running and 1 otherwise. While you can assign values to it

\gexmode=1999

such assignment has no effect on VTEX/GeX operations.

2.1 Troubleshooting

GeX initialization would fail if GeX cannot locate the base fonts.

GeX requires the base-13 fonts to be available. Make sure that the aliasing.pst
file lists them and that the .tfm files for them are in tfm.1ib

The base-13 fonts are the 4 variants of Times, Helvetica, and Courier each,
plus the Symbol font.

Chapter 3

Syntax

3.1 Supported PostScript operators

GeX currently supports a large subset of PostScript, including most of Level I
implementation and some Level II operators.

Since not the full PostScript operator set is supported, it is possible (and
even easy) to write a valid PostScript code which will be rejected by GeX; on the
other hand, the supported subset includes all the “practically” used operators,
so GeX would handle correctly most . eps that do appear in nature. Testing of
GeX on a large random set of . eps files downloaded from Internet shows that
GeX correctly handles more than 99% of them.

The supported instruction set at this time is:

= begin copy

abs bind cos

add bitshift count

aload cachestatus, countdictstack

anchorsearch dummy counttomark

and ceiling currentcmykcolor

arc charpath currentcolorscreen,
clear simplified

aren cleartomark currentcolortransfer

arct clip currentdash

arcto clippath currentdict

array closefile currentfile

ashow closepath currentflat

astore colorimage currentfont

atan concat currentglobal

awidthshow concatmatrix currentgray

currenthalftone
currenthsbcolor
currentlinecap
currentlinejoin
currentlinewidth
currentmatrix
currentmiterlimit

currentoverprint,
dummy

currentpoint
currentrgbcolor

currentscreen,
simplified

currenttransfer
curveto

cvi

cvlit

cvn

cvr

cvrs, added in 6.3
cvs

cvx

def
defaultmatrix
definefont
defineresource
dict

div
dtransform
dup

eexec

end

eoclip

eofill

eq

errordict

exch

exec

executeonly
exit

exp

fill
findfont
findresource
flattenpath
floor

for

forall

ge

get
getinterval
grestore
grestoreall
gsave

gt
identmatrix
idiv
idtransform
if

ifelse
image
imagemask
index
initclip
invertmatrix
itransform
known

kshow

le

length
lineto

1n

load

log

loop

1t

makefont
makepattern, level2
mark

matrix
maxlength
mod

moveto

mul

ne

neg
newpath
noaccess
not

or

pathbbox
pathforall
pop

print
pstack

put
putinterval
quit

rand
rcurveto
read
readhexstring
readline
readonly
readstring
rectclip
rectfill
rectstroke
repeat
resourcestatus
restore
reversepath

rlineto

rmoveto sethsbcolor store
roll setlinecap string
rotate setlinejoin stringwidth
round setlinewidth stroke
rrand setmatrix strokepath
run setmiterlimit sub
setoverprint .
save d P ! systemdict
scale ummy
setpagedevice token
scalefont pag t £
search setpattern, level2 ranstornm
setrgbcolor translate
selectfont
. setscreen truncate
setcachedevice
. setstrokeadjust, type
setcachelimit
] dummy userdict
setcharwidth £
settransfer, usertime
setcmykcolor simplified
version
setcolor show
vmstatus
setcolorspace showpage
setcolortransfer sin where
setdash sqrt widthshow
setflat srand xcheck
setfont status xor
setglobal statusdict xshow
setgray stop xyshow
sethalftone stopped yshow

3.2 Supported additional operators

The following additional operators are understood by GeX.

.autofontload — if the integer argument is non-zero, GeX will query
the aliasing.pst file when the findfont operator cannot resolve a font
name. The default is not to load fonts implicitly and substitute Helvetica.

.currentdigits — returns the number of emitted fractional digits. De-
fault is 2.

.loadfont — load a Type 1 font into the interpreter. The argument
should be a string containing a font name; only fonts listed in aliasing.pst
can be loaded.

.setdigits — sets the number of emitted fractional digits in the gener-
ated PDF output to an integer argument.

.setlanguagelevel — make the interpreter behave as PostScript level 1
or 2, see Language level.

.settexfont — used internally; similar to selectfont except that it
takes a TEX font number rather than a font name as an argument.

.produceimage — internal use only (6.3).

.extend — see Extending GeXX, 6.3.

.enabletransfer — see transfer handling, (6.3).

.tkwrite — TEX-GeX exchange, see TEX-GeX interface via .tk* operators
.tkread — TEX-GeX exchange, see TEX-GeX interface via .tk* operators

.tklength — TEX-GeX exchange, see TEX-GeX interface via .tk* opera-
tors

.loadimage — see image handling, (6.3).
.loadimagemask — see image handling, (6.3).
.loadcolorimage — see image handling, (6.3).
.readimage — see image handling, (6.4).

.readrgbimage — see image handling, (6.4).

3.3 TgX-GeX interface
The GeX engine is invoked from VTEX with the \special’s:

e \special{ps: ...} is used to pass a file to GeX.

e \special{pS: ...} is used to pass an immediate string to GeX.

Note that if you are going to use GeX primarily for inclusion of ready-made
. eps files, you should use a high-level package like graphics rather than VIEX'’s
\special’s.

In GeX mode, VIEX allows to precede a \special with the \immediate
command. \immediate \special’s are passed to GeX right away, while TEX is
still doing formatting.

In version 6.2 there was no way to reuse the .pdf code that could be gener-
ated during the execution of an \immediate \special; however, the GeX kernel
could be used for computations and the results of such computation could be
passed back to TgX. One practical example of this is the letterspacing imple-
mentation. In version 6.3 the code generated in immediate mode can be reused,
see Re-using pdf code.

Versions 6.3+ of VTEX support two similar interfaces.

The first interface has been available since version 6.2. It allows to write
to a designated TEX \toks register via standard PostScript output operators.
This interface is no longer recommended and might be phased out.

To report the results from GeX to TEX, set the \psconsole integer param-
eter to a number between 0 and 255:

\psconsole=100

This instructs GeX to write the output to the \toks### register rather then to
the console (### is the number passed via \psconsole. By default, psconsole
is set to -1 and GeX output goes to the .log file; when psconsole is in the
0-255 range, the output goes to the corresponding \toks register.)

The output is always appended to \toks; multiple outputs from GeX get
concatenated within the \toks register. The only ways to clear the \toks
register are via a TgX assignment

\toks100={}

or by restoring the register on a TgX group closing.

Notice further that you should use the PostScript print operator to place
information into a \the\toks register. This is because the other output op-
erators (=, pstack) append newline characters and the resulting contents will
be difficult to parse in TEX. (Also, the actual format of the output of these
operators may change in the future versions of GeX.) Since print allows only
string arguments, you may need to use a cvs to convert other PostScript types
to strings (see an example below).

If you intend to retrieve information from GeX with \immediate\special,
make sure to flush GeX output once at the beginning:

\immediate\special{pS: }

The reason for this is that GeX is initialized when a first \special{pS:...} is
encountered; during its first-time initialization it produces some output which
normally goes to the .log file and you do not want to be appended to the toks
variable. Supplying an empty call to GeX forces it to be initialized and the
initialization output to be written to the .log file.

Here is a small example of using GeX inline:

\documentclass{article}
\begin{document}

\immediate\special{pS: \the\year\space srand}
% This also will initialize GeX

\def\rand{’,
\immediate\special{pS: }%
\psconsole 100

\immediate\special{pS: rand 10 string cvs printl}j
The number is = \the\toks100.

\psconsole -1

\toks100={}

}

\rand\par\rand\par\rand\par
\end{document}

[You may want to cut out the text of this example and try it yourself.]

3.4 TgX-GeX interface via .tk* operators

The new interface available in version 6.3 consists of three additional PostScript
operators:

e .tkread to read contents of a TEX \toks register.
e .tkwrite to write to a TEX \toks register.

e .tklength to find out the length of a TEX \toks register.
The syntax of these operators is as follows:

e integer string .tkread — integer string

where the integer parameter should be in the range 0 through 255 and
designate a TEX token register; the string parameter is the receiving
string. In the output, the integer value is the new length of the string;
the string contains the contents of the \toks register.

e integer .tklength — integer

where the integer parameter should be in the range 0 through 255 and
designate a TEX token register; the output integer is the lentgh of the
contents of the TEX \toks register.

® boolean integer string .tkwrite —

where the boolean argument defermines if the data should be appended to
the \toks contents (true) or overwrite it (false); the integer parameter
should be in the range 0 through 255 and designate a TEX token register;
the contents of the string parameter will be placed into the specified
\toks register.

Note: . tkwrite writes the output in “global” mode (6.43+).

10

Note: During . tkread a rangeerror may occur if the \toks register contains
more characters than can be placed into the receiving string; one can use the
.tklength operator to find out how big the receiving string should be before
allocating it.

Note: Control sequences tokens withing TEX token strings are converted into
spaces during .tkread; they are counted as single characters in .tklength.

Note: Token strings produced by .tkwrite contain only tokens with TEX
\catcode 11 (other).

Note: The tokens produced by .tkwrite are always appended to the \toks
register.

Note: These three operators are also available in GeXX as the tkread(),
tkwrite() and tklength() methods.

3.5 Re-using pdf code

Version 6.3 of VIEX allows to re-use the pdf code that is generated by the
\immediate form of the \special{pS:...} operator.

The base logic is the following:

During the \immediate output, the pdf code is written to a temporary
stream. Any \immediate\special{pS:...} operator opens such a stream (un-
less it is already open by another operator); the currently opened stream, if
exists, is destroyed at the moment of shipout. Thus, by default, everything
written to immediate streams is lost.

To preserve the contents of an immediate stream, use the \special{ice}
command. This command closes the immediate stream; the new TEX count
register \pdflaststream can be used to retrieve the handle to the just closed
stream. The \special{!stream \the\pdflaststream} command can be used
to reinsert the frozen stream into the TEX machinery; it will get emitted during
the normal shipout.

Notice that the \special{ice} command must be issued in the \immediate
mode (otherwise, there will be no stream to freeze by the time it gets processed);
on the other hand, \special{!stream ...} must be deterred till the \shipout.

If you generate pdf code during the \immediate mode, you should real-
ize that the positioning of your code will not be known until the time of the
\shipout. Thus, the PostScript currentpoint is not really defined. The way
to overcome this problem is to initialize it to (0,0) by executing 0 0 moveto at
the beginning of the \immediate stream.

The data inserted in the output during the \special{!stream. ..} process-
ing is offsetted by the currenpoint as computed during the \shipout.

3.6 image handling

Six GeX extention operators:

e .loadimage

11

e .loadimagemask
e .loadcolorimage
e .produceimage
e .readimage

e .readrgbimage

are designed to enhance the PostScript imaging model and provide a possibility
for writing user extentions. Normally, PostScript interpreters handle the image
sampling via these operators:

e image
e imagemask
e colorimage

(you can find the detailed meaning and syntax of these operators explained in
the PostScript Language Manual.) GeX internally separates the task of obtain-
ing image samples from the task of emitting the image data (generating the
Pdf code in the Pdf backend) and provides partial operators for both tasks.
Specifically,

e image = .loadimage .produceimage
e imagemask = .loadimagemask .produceimage
e colorimage = .colorloadimage .produceimage

with the first operator in each case responsible to collecting the samples, while
the second operator (always, . produceimage) does the emission. While, for ex-
ample image is implemented as a primitive operator in GeX, it is fully equivalent
to a macro defined as

/image {.loadimage .produceimage} def

The .loadimage, .loadimagemask and .loadcolorimage operators leave a
built image on the GeX operand stack; . produceimage retrieves it.

This imaging models allows to enhance the image processing sequence with
additional operators, inserted between the loading and producing stages. If, for
example, .togray is an operator that converts color images to grayscale, we can
redefine

/image {.loadimage .togray .produceimagel} def

and have the images come up in grayscale. Notice that since the image handle
on the operand stack s not a PostScript object, operators like .togray have
to be implemented as usehyGeXX extentions, rather than PostScript macros.

The transbit extention library (to appear in 6.5) will provide a set of
such imaging filters; impatient users can find sample transbit outputs for the
toBright and toContrast filters at

12

ftp.micropress-inc.com/image

Filtering the image processing as described above would work only for the
image data within .eps files; the majority of the images you may want to
transform come, however, in bitmapped format. We, therefore, have added
some more extentions:

e .readimage reads the image data from a bitmapped file in the format
identical to the one produced by .loadimage and suitable for filters or
.produceimage.

e .readrgbimage is a similar operator which also forces the data to the
RGB color model.

For example,
(mypic.gif) .readimage .produceimage

will load the image from a GIF file and insert it to the output stream.

The supported formats currently are BMP, PCX, GIF, TIFF, JPEG, PNG,
and TARGA. Notice that inclusion of bitmapped images via GeX requires the
-ox switch (unlike the default inclusion via the \special{G. ..} model.)

Note: High-level support for these operators in graphicx is not provided in
this version of VIEX but will be forthcoming later.

Note: GeXX image API interface details will be published later.

3.7 transfer handling

A problem which arises with some .eps images is the use of the settransfer
PostScript and related operators. The problem is that these operators are used
for both device-dependant and device-independant color manupulations. The
first usage is more common and is essentially for minor color adjustments. In
such situations the best strategy for producing device-independant . pdf files is
to disregard the transfer altogether. This is the default behaviour of GeX (and
of the Acrobat Distiller).

However, in some (fortunately, rare) .eps files the same operators are used
to effect major device-independant adjustments. An example of such an ad-
justment would be to invert a black-and-white picture; this can be done with
the

{ 1 exch sub } settransfer

PostScript code snippet. Disregarding this would produce an inverted image.
Thus, both Acrobat Distiller and GeX allow to change this behaviour. In the
case of Distiller, the override is a global Job option which will apply to all parts
of a document; GeX allows to override only the handling of an individual image.
This is accomplished with the extention

int .enabletransfer

13

operator. With a 0 argument, . enabletransfer disables processing of transfer
code; a non-zero argument enables transferprocessing.
Here is an example of a small . eps file that uses transfer code (thanks, CdA):

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 20.0 20.0 172.0 122.0
%%Creator: WLINK85.EXE

%%Title: TEST.EPS
%%CreationDate:12/26/98111:082
%%EndComments

% EPS file to print LCD of TI-85 Graphics Calculator
save
% Define comstants —-———-—————————————————— e

% Width & height of printed LCD. Scale these as necessary.

/wid 150 def % Actual screen width = 150 (52.8 mm)
/ht 100 def % Actual screen height = 100 (35.15 mm)
/picstr 1 string def % Blank string used by ScreenImage procedure.

% Define procedures —————————mmm oo
/inch {72 mul} def

% Set position for lower-left corner of printout
/setposn { 21 21 translate} def

% Draw a border around the image.

/drawborder
{ gsave
setposn
[1001-0.5 0.5] concat
newpath
0 0 moveto
0 ht rlineto
wid 0 rlineto
0 ht 0 exch sub rlineto
closepath
0.48 setlinewidth % 2/300 inch
stroke
grestore
} def
/concatprocs

14

00
00
00
00
00
00
00
50
50
20
40
00
00
00
00
00
00
00

{ /proc2 exch cvlit def
/procl exch cvlit def

/newproc procl length proc2 length add

newproc procl length proc2 putinterval
newproc cvx

array def
newproc 0 procl putinterval

} def

/ScreenImage

{

128 64 1 [128 0 0 -64 0 64]

% Image is

128 pixels per row, 64 rows.

{ currentfile picstr readhexstring pop }
image
} def

gsave

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

setposn

wid ht scale
% Set currenttransfer to print

{1 exch sub} currenttransfer

concatprocs
settransfer

ScreenImage

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

40
60
70
60
40
00
00
00
00
00
00
00
00
00
00
00
00
00

02
06
Oe
06
02
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

15

Main Program

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
03

bit map in black on white.

00
00
00
00
00
00
00
00
00
00
00
00
00
03
Oc
30
c0
00

00
00
00
00
00
00
00
00
00
03
Oc
30
c0
00
00
00
00
00

00
00
00
00
00
03
Oc
30
c0
00
00
00
00
00
00
00
00
00

00
00
06
18
60
80
00
00
00
00
00
00
00
00
00
00
00
00

% Use {dup} and {1 exch sub} as inverses.

00
00
00
00
00
00
00
00
00
00
00
00
b6
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
4d
51
49
45
59
00
00
57
20
27
50
00

00
00
00
00
00
00
00
00
00
00
00
00
deé
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
cd
10
90
10
cc
00
02
36
02
02
07
00

00
00
00
00
00
00
00
00
00
00
00
00
da
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
of
f0
00
cl
86
98
80
80
00
30
40
70
50
70
00

00
00
00
00
00
00
00
00
00
00
00
00
da
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
of
f1
06
18
60
80
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
db
ff
00
00
00
00
00
00
00
00
00
00
00
08
05
of
fd
68
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
5b
ff
00
00
00
00
00
00
00
00
01
06
18
ef
f0
00
00
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
6b
ff
00
00
00
00
01
06
18
60
80
of
f0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
01
01
01
01
01
01
01
01
01
01
01
6d
ff
01
03
0d
31
cl
01
01
of
f1
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
00

80
80
80
80
80
80
80
80
80
80
80
83
ed
ff
c0
80
80
80
80
87
£8
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
00
00
57
50
27
40
00

00
00
00
00
00
00
00
03
Oc
30
c0
00
ad
ff
00
00
00
o7
78
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
02
36
02
02
07
00

00
00
00
03
Oc
30
c0
00
00
00
00
00
b5
ff
00
07
78
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
70
50
70
50
70
00

16

Oc
30
c0
00
00
00
00
00
00
00
00
00
b5
ff
78
80
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
07
fe
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
07
78
80
b6
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
07
78
80
00
00
dé
ff
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
06
78
80
00
00
00
00
da
fe
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
14
08
08
14
00
00
00
00
00
00
00
00

grestore
drawborder

restore

After 0 .enabletransfer (and by default), this image will produce

while 1 .enabletransfer will result in

’

|ECT .
x="1b w=-1B

Notice that the .enabletransfer setting obeys PostScript gsave/grestore;
we do not provide any way for a PostScript program to read the setting.

3.8 Language level

GeX can function as either Level 1 or Level 2 PostScript interpreter. While
PostScript Level 2 is a superset of Level 1, EPS files are not necesserily processed
the same way (and produce the same image) in Level 1 and 2 modes. This
happens because EPS files are programs, which can (and often do) check for
the existance or value of some PostScript operator (often, languagelevel) and
then execute totally different code depending on the results.

Thus, while in most cases the user might prefer to initialize the GeX inter-
preter in Level 2 mode, there may be cases when an individual drawing should

17

be processed in Level 1 PostScript.

To initialize VTEX/GeX in Level 1 mode, use the -ox switch; to initialize
VTEX/GeX in Level 2 mode, use the -ox2 switch. To switch GeX mode, use
the

\special{pS: N .setlanguagelevel}

command (N is either 1 or 2).
The execution of .setlanguagelevel switches between the two versions of
systemdict that exist in GeX; it also affects PostScript parsing and memory
management rules (for example, the << operator exists only Level 2). Switching
between levels should be done at the outside-most level of the execution.

Note that the distinction between the Level 1 and Level 2 PostScripts is
not well defined. In some Level 1 PostScript interpreters, languagelevel is
not defined, in some others, it is defined and returns 1 (GeX Level 1: not
defined). The colorimage operator has been defined in some versions of Level 1
PostScript but not all (GeX: defined).

Here is an example of a drawing that comes up differently in Level 1 and
Level 2:

Level 1

Note: This example uses the paths.eps sample file.

18

Chapter 4

GeXX

4.1 Extending GeXX

The major new feature added in VTEX 6.3 is GeXX. The second “X” stands for
eXtensible. With GeXX you can supplement the existing set of the PostScript
operators with new constructs, implemented in C.

This feature is applicable to both VTgX/Windows and VTgX/Linuz im-
plementations. The terminology in this document is tailored to Windows
users; Linuz users should have no problem with it as long as they translate
a few platform-dependant terms; for ezample, DLL’s under Linuz are just
Shared Objects (.SO).

To enrich GeX with new operators, you should

e Implement them within a C-language DLL, see Writing an implementation
DLL.

e Call the . extend operator to load the new language extensions, see Load-
ing an extension DLL

e Provide additional TeX and/or PostScript code for easy access to the new
operators.

VTEX 6.3 distribution includes an example of such an extension for drawing
the PieCharts.

Note: To be visible to the VIEX compiler, the extension DLL should be
placed into the VTEX\BIN\GEX subdirectory.

4.2 Writing an implementation DLL
In the current version, extention DLL’s must be implemented with Borland C

compiler (version 5.0 or newer).
An extention .DLL must export the following three functions:

19

e extern "C" WINAPI int Version()

This function must return the version of the interface as defined in gexi.h.
If the version returned by the extention DLL does not match the version
needed for the VIEX compiler, the DLL is not loaded.

e extern "C" WINAPI int Count()
which returns the number of extensions implemented (> 1).
e extern "C" WINAPI int Names(int i, char #**s, void #**p)

which returns the PostScript names and memory addresses of the new
extensions. This function will be called with the index argument i and
should fill up the parameter s with the name of the i’s operator imple-
mented and the parameter p with the address of the operator implemen-
tation. Notice that i is counted from 0 through Count() — 1.

Here is a sample implementation of these two functions:

extern "C" WINAPI int Names(int i, char **s, void **p)

{

if (1 == 0)
{
*s = "bluestretch";
p = (void)bluestretch;
}
else
{
*s = NULL;
*p = NULL;
}
return ((xs) != NULL);
1
extern "C" WINAPI int Count()
{
return 1;
}

The code above adds new PostScript operator bluestretch. Notice that
.extend will define it in the current top PostScript dictionary.

4.3 Writing an extention operator
An extension operator should be declared as an int function; its solo argument

is the GeX interface structure, GEXI. The function should return O in case of
success, and a non-zero value otherwise (triggering a PostScript internal error).

20

It is recommended not to remove arguments from the PostScript stack until

you are sure that the extention operator will return success.

voi

Pos

#de
#de

int

{

d bluestretch(GEXI *g)

The interface structure allows a C-language extention to interract with the
tScript environment via C-versions of the PostScript operators.
Below is a sample implementation of a simple extention operator, bluestretch:

fine MAXLEN 19
fine RESOLUTION 256

bluestretch(GEXI *g)

double width = O;
double height = 0;

C

i

har Buf [MAXLEN+1];

nt len;

g->tkread (99, Buf, MAXLEN, &len);

i

f (sscanf(Buf, "%1f%1lf", &height, &width) != 2)
return;

double step = width/(double)RESOLUTION;

double x, y;
g->currentpoint (&x, &y); // undefined in the \immediate mode
g->gsave();

g->newpath();

f
{

}

or (int i = 0; i < RESOLUTION; i++)

g->moveto(x, y);

g->lineto(x+step, y);

g->lineto(x+step, y+height);

g->lineto(x, y+height);

g->setrgbcolor (0.0, (double)i/(double)RESOLUTION, 1.0);
g->£il110);

x += step;

g->grestore();

ret

3

Pos

urn 0;

Notice that bluestretch takes the actual parameters from TgX rather than
tScript via a hardwired \toks99 register. [A proper PostScript extention

should take the arguments from the PostScript stack.]

21

The GEXI interface functions are listed below. Note that the list of the
interface functions is likely to grow in future versions; always look at gexi.h
for current information.

- GEXI.H listing —--—-—-—--———-
// Copyright (C) 1999 by MicroPress, Inc.

// All Rights Reserved

// By Michael Vulis

#define GEXI_VERSION 630

struct GEXI {
long size;
long version;

// GeX/PostScript calls
int (#print) (char*);
int (#tkwrite) (int n,char*,int append);
int (*tkread) (int n,char*,int maxlen,int *newlen);
int (*tklength) (int n,int *newlen);
int (*currentpoint) (double*,double*);
int (*moveto) (double,double);
int (*lineto) (double,double);
int (*rlineto) (double,double);
int (*curveto) (double,double,double,double,double,double);
int (*rcurveto) (double,double,double,double,double,double);
int (*arc) (double,double,double,double,double);
int (*arcn) (double,double,double,double,double);
int (*arct) (double,double,double,double,double);
int (*newpath) ();
int (*setlinewidth) (double);
int (*currentlinewidth) (doublex) ;
int (*setlinecap) (int);
int (*currentlinecap) (intx*);
int (*setlinejoin) (int);
int (*currentlinejoin) (int*);
int (*setmiterlimit) (double);
int (*currentmiterlimit) (double*);
int (*closepath) ();
int (*stroke)();
int (%£ill) ();
int (*eofill) ();
int (*clip) O;
int (*eoclip));
int (*gsave) ();
int (*grestore) ();
int (*setgray) (double) ;
int (*currentgray) (doublex);

22

int (*setrgbcolor) (double,double,double);
int (*currentrgbcolor) (double*,double*,doublex) ;
int (*setcmykcolor) (double,double,double,double);
int (*currentcmykcolor) (double*,double*,double*,doublex*) ;
// Operand Stack interface
int (*CountOstack) (int *);
int (*#GetOstackInteger) (int,int*);
int (*GetOstackNumeric) (int,doublex);
int (*GetOstackReal) (int,double*);
int (*GetOstackBoolean) (int,intx*);
int (*#GetOstackString) (int,int*,unsigned charx**);
int (*#0stackPop) (int);
// Private part
} gexi_;

All the functions listed above return zero if the call is successful and non-
zero error code if the call fails. A call would fail in exactly the same cases when
a corresponding PostScript operator would fail.

Majority of the methods provided by GEXI correspond one-to-one to ei-
ther PostScript operators with the same names, or GeX extention operators
(.tkread, for example). The only exception to this at this time are the meth-
ods that deal with the PostScript operand stack; these methods are used to
retrieve (and, later, pop) the arguments provided on the operand stack.

Note: The GEXI structure is likely to change in the future. The changes to the
structure can be tracked by checking the version number; this will correspond
to the VTEX version. An attempt to execute an extension with a wrong version
of the .DLL is likely to crash the system; the version control is implemented to
prevent this from happening.

4.4 PS VM access

Very limited access to PostScript run-time stack is provided in this version.
Use the CountOstack() function to find out the number of elements on the
PostScript stack. You can retrieve individual elements only if they are of
PostScript type integer, real, boolean or string; the GetOstackInteger(),
GetOstackReal(), GetOstackBoolean(), and GetOstackString() functions
are provided to retrieve elements of these types. The GetOstackNumeric()
can retrieve either integer or real value.

The first argument of these functions is an index to the operand stack; the
top elements resides at CountOstack() — 1. The other argument(s) are for
recieving the value; in the case of GetOstackString() both the string length
and the pointer to the string are returned.

These functions will return an error if called for a wrong type.

23

Dereference the string value pointer only for reading; modifying a string
from-within an extention might lead to unpredictable results.
A more sophisticated interface may be provided in a future version.

4.5 Loading an extension DLL

To load an extension .DLL, execute the .extend operator.

The syntax is:

string .extend — integer

where the string argument contains the name of the .d11 file with the
language extentions, the returned integer is the number of extention operators
loaded.

The .extend operator will fail with an error if

e the specified DLL cannot be found.

e the specified DLL does not export all three required functions (Count (),
Version(), Names()).

e the version returned by the DLL does not match the version of the VIEX
compiler.

In all three cases, .extend will cause a PostScript fileerror.

4.6 PieChart

PieChart is a more sophisticated example of using GeXX.
PieChart implements MS Word-like PieChart in TgX. The implementation
consists of

e PieChart.DLL, the extension library.

e PieChart.Sty, a BTEX2E style for using PieChart.
Here is a sample code for using PieChart:

%% Define some colors
\definecolor{lightyell}{rgb}{1,1,0.75}
\definecolor{peach}{cmyk}{0,0.50,0.70,0}
\definecolor{orange}{cmyk}{0,0.61,0.87,0}
\definecolor{navyblue}{cmyk}{0.94,0.54,0,0}

\begin{center}

Shares of \TeX\ dialects:\par
\fbox{\begin{PieChart} [rt]{2in}
\PieSlice{lightyell}{65}{\LaTeXe}
\PieSlice{green}{20}{Plain \TeX}

24

\PieSlice{navyblue}{10}{AmS\TeX}
\PieSlice{yellow}{4}{\LaTeX\ 2.09}
\PieSlice{orange}{1}{0ther}
\end{PieChart}}

\end{center}

hh

and a sample PieChart produced by this extension:

Shares of TEX dialects:

BTEX 2.09
Plain TEX
AmSTEX
BTEX 2¢
Other

ICRL N N

4.7 PieChart source

We provide full source of the PieChart plugin. The source has been divided
into three parts:

e gexstd.h implements the required portion of the API; and hides the
platform-dependant parts. As long as the extension .dll implements
a single PostScript extension, you should be able to reuse this file in your
own plugins. We strongly recommend doing exactly this since this will
make your plugin useful on both the Windows and the Linux platforms.

e piechart.cpp is the PieChart-related portion of the source. The only
API-required activity is to include (at the beginning) gexstd.h and exe-
cute (at the end) the the stdgexapi macro to declare the new extension.

e piechart.sty is the TEX interface for calling PieChart.

Here is the gexstd.h source. Linux users should notice the use of #ifdef linux
in the source; the Linux makefile defines it.

// Copyright (C) 1999 by MicroPress, Inc.
// All Rights Reserved
// By Michael Vulis and Alex Kostin

25

#ifdef __WIN32__
#include <windows.h>
#else

#include <ctype.h>
#endif

#include <stdio.h>
#include <math.h>
#pragma hdrstop

#ifdef linux
#define DLLFUNC(type) type
#elif defined(__BORLANDC__)
#define DLLFUNC(type) type __export WINAPI
#define DLLENTRY DllEntryPoint
#else // _MSC_VER_
#define DLLFUNC(type) __declspec(dllexport) type WINAPI
#define DLLENTRY D11Main
#endif

#define CFUNC extern "C"

#ifndef ushort

#define ushort unsigned short
#endif
#ifndef byte

#define byte unsigned char
#endif
#ifndef TRUE

#define TRUE 1

#define FALSE 0O
#endif
#ifndef M_PI

const double M_PI = 2.0%acos(0.0);
#endif

#include "gexi.h"

#define stdgexapi(psname,cppname) \
CFUNC DLLFUNC(int) Names(int i, char** s, void** p) \
{\

if (i ==0) \

{\

*s = psname; \

p = (void)cppname; \
A

26

else \

{\
*s = NULL; \
*p = NULL; \
P\
return ((*s) != NULL); \
LA

\

CFUNC DLLFUNC(int) Version() { \
return GEXI_VERSION; \

F A\

\

CFUNC DLLFUNC(int) Count() \

{\
return 1; \

A

#ifdef __WIN32__

CFUNC BOOL WINAPI DLLENTRY(HINSTANCE /* hinst */,
DWORD /#* wDataSeg */, LPVOID /# cmdline */)

{
return TRUE;

}

#endif

// End of GeXstd.h source

Here is the actual implementation source for PieChart:

// Copyright (C) 1999 by MicroPress, Inc.
// All Rights Reserved
// By Alex Kostin

#include "gexstd.h"
#define NOCMYK -128

typedef struct

{
double red;
double green;
double blue;
double black;
double percent;

} TSliceData;

//const double pt2bp = 7200.0/7227.0;

27

const double pt2bp = 1.0;

int isnumber (char c)

{

}

return isdigit(c) || ¢ == .7 || ¢ == "=’

c ==)4

int GetSliceData(char** StrPtr, TSliceDatax* slicedata)

{

if (!*StrPtr)
return FALSE;

while (isspace(**StrPtr))
(*StrPtr)++;

if (**StrPtr != > (’)
return FALSE;

else
(*StrPtr) ++;

char* CurStr = *StrPtr;
while (**StrPtr != ’)’)
if (!**StrPtr)
return FALSE;
else
(*StrPtr)++;

*(xStrPtr)++ = ’\0’;

int ReadComp = sscanf (CurStr, "%1f%1f%1f%1lf", &slicedata->red,

? TRUE :

&slicedata->green, &slicedata->blue, &slicedata->black);

if (ReadComp == 3)
slicedata->black = NOCMYK;
else
if (ReadComp != 4)
return FALSE;

while (isspace(**StrPtr))
(*StrPtr)++;

if (*#xStrPtr != ’:?)

return FALSE;
else

28

FALSE;

}

(xStrPtr)++;

if (sscanf (*StrPtr, "%1lf", &slicedata->percent) != 1)
return FALSE;

while (isnumber (**StrPtr))
(*StrPtr) ++;

return TRUE;

int GetTokenRegisterNumber (GEXI* GeX, int *Value)

{

int StackIndex, result;
GeX->CountOstack(&StackIndex);
if (StackIndex<=0)

return -1;
StackIndex—-;
result=GeX->GetOstackInteger (StackIndex,Value);
if (result) // Things went OK.

GeX->0stackPop(1);
return result;

int piechart(GEXI* GeX)

{

int TokenRegisterNumber;
int result;
result=GetTokenRegisterNumber (GeX, &TokenRegisterNumber) ;
if (result) // Things failed.
return result;

int Length;

GeX->tklength(TokenRegisterNumber, &Length);

unsigned char* Buf = new unsigned char[Length+1];
GeX->tkread(TokenRegisterNumber, Buf, Length, &Length);

TSliceData SliceData;
char* StrPtr = (charx*)Buf;
double PieRadius;

if (sscanf(StrPtr, "%1f", &PieRadius) != 1)

{
delete [] Buf;

29

3

}

return -1;

PieRadius *= pt2bp/2.0;
while (isspace(*StrPtr++));
while (isnumber (*StrPtr++));

double X0, YO;

GeX->currentpoint (&X0, &YO); //Not defined in immed mode
X0 += PieRadius;

Y0 += PieRadius;

double CurAngle = 90.0;

GeX->gsave();
while (GetSliceData(&StrPtr, &SliceData))

{

}

GeX->newpath();

GeX->moveto (X0, YO0);

double SliceAngle = 3.6%*SliceData.percent;

double StartingAngle = M_PI*(CurAngle-SliceAngle)/180.0;

GeX->lineto(X0+PieRadius*cos(StartingAngle),
YO+PieRadius*sin(StartingAngle));

GeX->arc(X0, YO, PieRadius, CurAngle-SliceAngle, CurAngle);

CurAngle -= SliceAngle;

GeX->closepath();

GeX->gsave();
if (SliceData.black == NOCMYK)
GeX->setrgbcolor(SliceData.red, SliceData.green, SliceData.blue);
else
GeX->setcmykcolor(SliceData.red, SliceData.green, SliceData.blue,
SliceData.black);
GeX->fill();
GeX->grestore();

GeX->setrgbcolor(0, 0, 0);
GeX->stroke() ;

GeX->grestore();

delete [] Buf;
return 0;

stdgexapi ("piechart",piechart)

30

// End of PieChart.CPP source
The following makefile can be used with gcc under Linux:

TARGET_NAME := ../piechart

TARGET_TYPE := so

CXX = g++

CXXINCLUDES := -I../common/

CXXFLAGS := -g -fpic -Dlinux $(CXXINCLUDES)

LD := 1d

SRCS :
0BJS :

piechart.cpp
$(SRCS: .cpp=.0)

.PHONY: all
all: $ (TARGET_NAME) . $ (TARGET_TYPE)

$ (TARGET_NAME) . so: $(0BJS)
$(LD) -G -o $@ $~

h.o: %.cpp
$(CXX) $(CXXFLAGS) -c $<

.PHONY: clean
clean:
rm *.0 *.SO;

while the one below is suitable for BC 4.5 or BC 5.0 under Windows:

. AUTODEPEND

#

Borland C++ path
#

BCPATH = C:\BC5

#
Borland C++ tools
#

BCC32
TLINK32

Bcc32 +BccW32.cfg
TLink32

#
Options

#

OPTIONS = -u -I$(BCPATH)\INCLUDE -D_RTLDLL;_BIDSDLL;
LINKOPTIONS = -Tpd -ap -c -L$(BCPATH)\LIB

31

#

Dependency List

#

Dep_piechart = piechart.dll

piechart : BccW32.cfg $(Dep_piechart)
echo Success

Dep_piechartddll = \
piechart.obj

piechart.dll : $(Dep_piechartddll)
$(TLINK32) Q&&|
/v -Tpd -ap -c -L$(BCPATH)\LIB -x +
$ (BCPATH) \LIB\c0d32.0bj+
piechart.obj
$<, $=
$ (BCPATH) \LIB\bidsfi.lib+
$ (BCPATH) \LIB\import32.1lib+
$ (BCPATH) \LIB\cw32i.1ib

I
piechart.obj : piechart.cpp
$(BCC32) -c &4l
$ (OPTIONS) -o0$@ piechart.cpp
I

Compiler configuration file

BccW32.cfg : piechart.mak
Copy &&|

-w

-R

-v

32

| $@

The final part of the source is the piechart.sty style; you can find it in
the VTEX\L2E subdirectory.

33

Chapter 5

Imaging plugins

5.1 General

GeX imaging plugins are used to adjust images during their inclusion into the
pdf document. T'wo sample imaging plugins are included in VTEX6.4:

e TransBit: bright/contrast/colorspace adjustment
e Degrade: image downsampling

Supplied imaging plugins are partially supported by the graphicx package.
The examples in this chapter use a single image file, macaw. jpg. Normally,
this image can be included with the graphicx command:

\includegraphics[scale=0.4]{macaw. jpg}

which will result in

34

Note: This (default) image loading is implemented via the \special{G...}
command and does not require GeX.
We can also load the same image via GeX with

\includegraphics[scale=0.4,viagex] {macaw. jpg}
which is essentially equivalent to

\hbox to 2in{\hss
\special{pS: (macaw.jpg) .readimage .produceimagel}\hss}

While there are subtle differences between these two procedures, here they will
produce identical images.

The image plugins work only in the GeX model. The general idea is to
insert an image plugin action between the .readimage and the . produceimage
operators, for example with

\hbox to 2in{\hss

\special{pS: (macaw.jpg) .readimage
(toBright 10) transbit

.produceimage}\hss}

Since the image plugin functionality is not implemented in the core GeX, a
plugin should be loaded with the .extend operator. However, if you are using
the graphicx package, the supplied plugins will be loaded on demand.

Image plugins are a brand new feature of VTEX; errors are possible and both
the documentation and the specific syntax are subject to revisions.

35

5.2 TransBit

The Transbit plug-in uses the GeXX image interface to implement several im-
age manupulation functions, including adjustment to the brightness and the
contrast of an image, and replace the color space.
The functionality of Transbit is supported by graphicx macro package.
The transbit plugin can be loaded by

\special{pS: (transbit) .extend }

The first examples modifies the contrast the image. The three images below
were produced with these commands:

\includegraphics[width=2in,viagex, contrast=-0.3]{macaw. jpg}
\includegraphics[width=2in,viagex, contrast=0] {macaw. jpg}
\includegraphics[width=2in,viagex, contrast=+0.3]{macaw. jpg}

which, on the low level, expand into

\special{pS: gsave currentpoint translate 0.2 0.2 scale (macaw.jpg)
.readimage (toContrast -30) transbit

.produceimage grestore}

\special{pS: gsave currentpoint translate 0.2 0.2 scale (macaw.jpg)
.readimage (toContrast 0) transbit

.produceimage grestore}

\special{pS: gsave currentpoint translate 0.2 0.2 scale (macaw.jpg)
.readimage (toContrast +30) transbit

.produceimage grestore}

In a similar fashion,

\includegraphics[width=2in,viagex,brightness=-0.3]{macaw. jpg}
\includegraphics[width=2in,viagex,brightness=0] {macaw. jpg}
\includegraphics[width=2in,viagex,brightness=+0.3]{macaw. jpg}

will invoke Transbit to produce

36

The final functionality of Transbit is the Color Space conversion. Usually,
you would want it to decrease the size of the image and to prepare the document
for printing on a non-color device. For example,

\includegraphics[width=2in,viagex, colorspace=bw] {macaw. jpg}
\includegraphics[width=2in,viagex,colorspace=grayscale 16]{macaw. jpg}
\includegraphics[width=2in,viagex,colorspace=grayscale 256]{macaw.jpg}

5.3 Degrade

The Degrade plugin is used to downsample (reduce the number of pixels) im-
ages. The only purpose of using this plugin is to reduce the size of the .pdf
file; the price you are paying is the reduced quality of the image.

Degrade is supported by vtex.def via the degrade= key; the affiliated value
is a number in the range 0 through 1 with O effectively destroying the image
(removing all pixels) and 1 leaving it intact. For example:

\includegraphics[width=2in,viagex] {macaw. jpg}

\includegraphics[width=2in,viagex,degrade=0.6]{macaw. jpg}
\includegraphics[width=2in,viagex,degrade=0.4] {macaw. jpg}

37

\includegraphics[width=2in,viagex,degrade=0.3]{macaw. jpg}
\includegraphics[width=2in,viagex,degrade=0.2] {macaw. jpg}
\includegraphics[width=2in,viagex,degrade=0.1]{macaw. jpg}

yields

38

Notice how the (uncompressed) sizes of the six embedded images decrease:

Coeff. | Data Size
1.0 1276872
0.6 458496
0.4 203520
0.3 114624
0.2 50688
0.1 12672

Typically, it is the large images that should be considered for degrading.
Which coeffient will produce the best results can be determined only experi-
mentally. It might be a good idea to print documents that contain downsampled
images to see if the loss of quality is tolerable.

39

Chapter 6
Bugs

Being a pilot implementation with source of about 15000 lines of code, GeX
undoubtly has many bugs. About a hundred of them were fixed since the happy
moment in July when we thought it more-or-less works (and all fall apart on
testing of huge set of real-life .eps’s from all kinds of sources.

In the aggravation of fixing what-we-thought was a working program, we
discovered that the bugs came in three flavors:

e Our bugs
e Peculiarities (often undocumented) of PostScript language
e Bugs (or problems) in Adobe Software.

Bugs of our implementation (important for us for sentimental reasons) are
not worth discussing here; but some of the other bugs are definitly worthwhile
mentioning.

6.1 Degenerate matrices

Near-degenerate matriz transforms cause a serious problem with the Acrobat’s
16-bit computational limit. It can be shown that the problem is not solvable
correctly in general; and Adobe Acrobat Distiller would fail on degenerate trans-
forms.

The example file

% lwid.ps
0 0 moveto
gsave 100 200 lineto 2 3 scale 1 0 O setrgbcolor stroke grestore
gsave 200 100 lineto 0.5 0.3 scale 0 1 O setrgbcolor stroke grestore
gsave 200 200 lineto 0 O 1 setrgbcolor

[0.186718 -0.565306 0.873838 -2.64563 0 0] setmatrix

stroke grestore
showpage

40

should produce three lines from the origin. Distiller, however, will miss the blue
line. GeX, on the other hand, will produce correct output:

Near-degenerate matrices are not a perverted abberation: they tend to be gen-
erated by some common software, especially the CorelDraw. The particular set
of numbers in the source above came from a Corel example.

While GeX does the work correctly in all cases, some distortion in the line
widths is possible and is not avoidable.

6.2 Level 1 strokeadjust

Some graphics programs (Freehand is one) output Level I PS code which fits
the coordinates to an integer grid. This code, if executed literally, will produce
rather disasterous results with GeX(left):

The nature of the problem is a bug (or feature) in the Freehand adjustment
code which does not bother to check for the device matrix and assumes that it
corresponds to the output pixel resolution of 300 dpi or higher (which would
imply a device matrix [4 0 0 4]). However, the GeX device matrix is

41

chosen to be an identity, to avoid extra rounding by TEX'’s < GeX’s coordinate
translation. This causes extremely hoarse coordinate rounding.

To avoid this problem, set the innerscale option to at least 4. The example
above, for example, was produced with

\hbox to \textwidth{
| |\includegraphics[width=5cm] {gears.eps} \hss
\includegraphics[innerscale,width=5cm] {gears.eps}
I'1%
}

Note: The innerscale option is ignored by VTEX in modes other than PDF;
it is not also a VTEX-only option.

Notice that the Level II strokeadjust operator does not cause a problem
since it is totally ignored by GeX.

6.3 Font name collision bug

There seems to be a bug in many versions of Acrobat which results in (different)
fonts with names starting with |------ ... being treated as a single font.

To avoid this problem, we replace such names with |xxxxxx.... This,
however, would cause a collision if you actually have a font with such name
installed.

6.4 Encoding bug

Under Windows, the Acrobat seems to ignore the /StandardEncoding spec-
ification and uses the WinAnsiEncoding instead. This may lead to incorrect
character substitution for some codes in the 2nd half of the ASCII set.

To overcome this problem, we always include the encoding vector, even if
the font is not reencoded.

6.5 Acrobat4: Missing fonts

Acrobat4 introduced a fresh problem: missing Times and Helvetica fonts.

Adobe apparently was looking for a way out of bugs caused by the absense
of Windows-standard Arial and TimesNewRoman in PostScript software; their
solution was to add these fonts to the Acrobat4 distribution. Unfortunately,
they also removed Times and Helvetica, hoping to emulate them with the Arial
and TimesNewRoman variants.

This act introduced problems both for Adobe’s software and for VIEX. In
the case of Adobe, their claim to PostScript level II (and now Level III) com-
patibility ceased to be valid: it is easy to come up with examples of Level II
code which will not correctly compile by Distiller due to the missing fonts.

42

In the case of VTEX, similar (or worse) problems would occur.
There are two solutions to the problem:

e Install the Times and Helvetica fonts from, for example, the Acrobat3
distribution.

e Use the new emulation switch, oe. With this switch, VTRX will load the
Arial and the TimesNewRoman fonts, internally renaming them to Hel-
vetica and TimesRoman. While the results will not be always identical to
what standard Helvetica and TimesRoman should produce, it is sufficient
for GeX to work.

43

Chapter 7

Dirty Tricks

7.1 show redefinition

In order to accomodate packages such as PSTricks and PSFrag, VITEX keeps
track of redefinition of the show PostScript primitive within the GeX engine.
In addition to supporting the mentioned packages, this allows rather nice font
effects to be implemented with very simple inline code.

7.1.1 Simple outline

The below examples were produced with the

\def\outl#1{\special{pS: save /show{false charpath stroke}def}
#1\special{pS: restorel}}

macro.

This is a test.
This is a test.

7.1.2 Wider outline with color
The

\def\outla#1{\special{pS: save /show{false 3 setlinewidth 1 0 O
setrgbcolor charpath stroke}def} #1\special{pS: restorel}}

macro produces

44

This ie a test.

7.1.3 Filled letter with outline
The

\def\outlb#1{\special{pS: save /show{false charpath gsave 2 setlinewidth
1 0 0 setrgbcolor stroke grestore O 1 O setrgbcolor fill}def}
#1\special{pS: restorel}}

macro produces

This is a test.

7.1.4 Charpath shown

We can also get inside the character representation (something which PostScript
would not do on Type 1 fonts):

\def\outlc#1{\special{pS: save /show{false charpath gsave
0 setlinewidth
1 0 0 setrgbcolor
stroke grestore
0 setlinewidth O O O setrgbcolor
{rct}
{rct}
{rct 1 0 0 0 setcmykcolor rct rct 0 0 O setrgbcolor}
{} pathforall }def}
#1\special{pS: restorel}}

to obtain:

45

i a o
TE&QN H u[/“@ H g:ii}\il H EF:P;\D D‘n ,s:n.,\n

Note: It is important to restore the definition of show before the end of page.
Look carefully at the page number on the previous page to see what might
happen if you do not.

-

7.2 Fragment repositioning

Several examples in PSTricks use the PostScript commands to move the text
around in order to land it in an appropriate place on a drawing.

VTEX keeps track of PostScript attempts to group the TEX output; when
such activity is detected, VIEX generates PostScript code rather than PDF and
feeds this code into the GeX engine.

46

7.3 Letterspacing

Here is a feeble attempt in implementing letterspacing. Since Knuth explicitly
warned against TEX supporting letterspacing, we accomplish this in GeX.

All examples below will letterspace with extra 2-pt space.

Thus,

\immediate\special{pS: /k 2 def})

Notice that \immediate\special is mot normal TEX: it causes a backend
special to be evaluated right away, rather than waiting for the output cycle.
Let

\def\forcefont{\hbox to Opt{}}
\def\as#1{\forcefont\special{pS: k O (#1) ashow}}

A first attempt is to simply plug-in ashow:
Letterspacing: \as{Letter-spaced text here.}!

to obtain

Letterspacing: L e t t e r - S) a c e d
does not work very well: the exclamation mark overlaps “L”. Indeed, there is
no way TgX would know how much space the \special would need.

Here is a macro that will measure the required width:

\newdimen\tmpz

\def\sw#1{Y

\forcefont

\psconsole 255

\immediate\special{pS: (#1) dup stringwidth pop exch length 1 sub k mul add
10 string cvs print}y

\message{Result=[\the\toks255]}

\tmpz=\the\toks255pt

}

We call GeX in the \immediate mode since we want to reuse the result to
set the string.

\sw{Letter-spaced text here.}

Now, it will work correctly:

Letterspacing: \hbox to \tmpz{\as{Letter-spaced text here.l}\hss}!

47

Letterspacing: L e t t e T -1 S o) a c e

Note: Of course, it makes more sense to write a single macro but this example
is provided for illustration purposes only.

Note: Even more sense would be to build the output code in the \immediate
phase and re-use it later (one call to GeX, rather than two); such a feature
might be added later.

Note: One possible pitfall: GeX executes a save-restore pair on each emitted
page. Thus it is important to assure that no page breaks would occur in the
middle of calls to GeX.

48

Chapter 8

Special Cases

8.1 PSTricks

GeX can handle PSTricks files. Notice that in order to deal with some of the
more tricky tricks, GeX plays some tricks of its own.

Two tricks that appear in PSTricks are show redefinition and fragment repo-
sitioning.

8.2 PSFrag

GeX can handle PSFrag files.
The entire PSFrag system is built around the fragment repositioning hack.
We do not yet supply PSFrag as part of VIEX system; it will appear soon.

8.3 MetaPost

While GeX can handle MetaPost-generated files, it is important to state that
MetaPost outputs invalid EPS files. Rather than use the standard fonts or
embed fonts into the EPS, MetaPost merely includes declarations like

/cmr10 /cmr10 def

and expects post-processing to find and substitute the fonts. Instead of such
post-postprocessing, GeX ignores (processes, which is the same really) this dec-
laration, but requires either explicit loading of needed fonts via the .loadfont
extension

\special{pS: /cmr10 .loadfont}

(one such command for each required font) or enabling of the autoloading feature
via the .autofontload extension

49

\special{pS: 1 .autofontload}

These commands must be issued before a MetaPost-generated file is actually
included.

50

	Why GeX?
	Why call it GeX?

	Using GeX
	Troubleshooting

	Syntax
	Supported PostScript operators
	Supported additional operators
	TeX-GeX interface
	TeX-GeX interface via .tk* operators
	Re-using pdf code
	image handling
	transfer handling
	Language level

	GeXX
	Extending GeXX
	Writing an implementation DLL
	Writing an extention operator
	PS VM access
	Loading an extension DLL
	PieChart
	PieChart source

	Imaging plugins
	General
	TransBit
	Degrade

	Bugs
	Degenerate matrices
	Level 1 strokeadjust
	Font name collision bug
	Encoding bug
	Acrobat4: Missing fonts

	Dirty Tricks
	show redefinition
	Simple outline
	Wider outline with color
	Filled letter with outline
	Charpath shown

	Fragment repositioning
	Letterspacing

	Special Cases
	PSTricks
	PSFrag
	MetaPost

